
PAL University of Hertfordshire

Program Input – Week 2 – October 2015 –

Aim & Objectives
• Re-cap on previous session

• Getting user input

• Working with user input

• Converting an mathematical algorithm to code

Introduction
What’s the deal with user input?
First things first, what is user input? In this case we’re
talking about things typed into the keyboard but input in
general isn’t limited to what the user types. Other than
the obvious other inputs, your mouse or touch screen, an
extremely frequent use of programs will take string or file
input and perform some operation. Your text editor takes
an existing file or new file and puts text into it, your music
player will take sound files and output them over some kind
of speaker - you get the point.

What takes a boring and predictable program into the realm
of exciting is essentially it’s input, what it does to the data
and it’s output. We know how to output with our ‘print()’
statements, we’re about to cover getting user input and then
we’ll be looking at how we can use this to our advantage.

What’s an algorithm?
An algorithm is essentially a way of writing instructions.
Some people shy away from the word ”algorithm” - but it
is nothing to be afraid of. Once you understand what they
are, you’ll know they are very simple. It could be:

A =
1

n

n−1∑
x=0

xi

... Or a list instructions:

• Plus ‘1’ to ‘x’

• If ‘x’ is equal to ‘n’ then:

– Divide ‘A’ by ‘n’ and store the result in ‘A’

– ‘stop’

• Add the ‘i’th number in the number list ‘x’ to ‘A’

• Go to the top again

... Or, as I’m sure you are most comfortable with:

“Take the mean (average) of a list of numbers.”

You may or may not be pleased to hear that you won’t
be asked to do the first one, but it’s important to remem-
ber that math equations and instructions are effectively the
same and are not something to be afraid of. Everything you
do in both programming and life in general can be written
as a list of simple instructions, which in turn makes algo-
rithms very powerful.

Exercise - Hello Input
Go to the homepages site you used last week (in the
“Resources” section) and copy the code from ‘Resources/
Week1/ helloinput ’. Make sure you have the latest version
of the idle editor open - the sheet from last week is on the
page.

Experiment with this code, change the ‘"input text>"’ for
‘"What is your name? "’ and use the ‘print()’ function
to display ‘"Hello NAME HERE, nice to meet you!"’.

Exercise - Hello Decision
A program’s ability to make a decision is paramount to it
being useful! In the world of Computer Science, we call
these decisions ”conditions”, where the result is ”yes” or
”no”, ”true” or ”false”, ”1” or ”0”. The idea is there are
only to outputs, you could say the output is binary. An
example of this would be our next example in ‘Resources/
Week1/ hellodecisions ’. Load this and run it. What year
do you have to be born in to be cool?

As we look at the program’s code, you can see the first line
is:
year = int(input("When were you born? "))

What this is doing is running the function ‘input("When
were you born? ")’, which takes one paramter, text to
prompt the user with and returns a string containing what
the user typed before pressing enter. Working our way
outwards (functions, like math, is evaluated with the in-
ner most brackets first and works outwards) we cast our
value to an ‘int’, i.e. an ”integer”. A ”cast” is basically a
conversion, you’re saying make A into a B. Of course this
can fail, for example if you run the program and type text
you’ll break it. An ”integer” or ”int” for short (program-
mers are usually lazy) is a large number that can be both
positive and negative, but may not have a decimal like ‘0.5’
for example.

Next, in the code a question is asked. We say ‘if’ the next
thing is ”true”, then run the code below, ‘else’ run the
bit below the ‘else :’ statement. ‘year’ is the number
from the user and we’re checking whether that number is
less than (‘<’) or equal to (‘=’) ‘1990’. What happens when
you change the ‘<’ to a ‘>’ and input your age to the pro-
gram? What happens when you put something in that is a
decimal?

Exercise - Factorials
Now we will be building a simple factorial program. Facto-
rials are basically all the numbers up to and including that
number timesed to that number. To make more sense of it,
see the following:

• 1! = 1
• 2! = 1 ∗ 2
• 3! = 1 ∗ 2 ∗ 3
• 4! = 1 ∗ 2 ∗ 3 ∗ 4

The special case is 0! which is also 1. (It’s worth reading
up on why this is the case - it’s interesting). Using the
skills you have acquired, build a new program that does the
following:

• Gets user input and casts this value to an integer
• Checks that this number is not negative
• Loops through and:

– Times the user input with the current sum and
saves the result as the new sum

– Decrements (minus one) the user input
• Print the result

You have 5 cases you can check whether you pass. Writing
algorithms with expected input and output code tests the
robustness of what you have written, making sure you don’t
accidentally break something. We’ll cover more on testing
in later sessions.

Remember this is about you learning to use you resources
and gained skills, have a good attempt at this before asking
for help.

1



Exercise - Fibonacci Numbers (Advanced)
This exercise is purposely vague and difficult. You don’t
have to complete this if it’s too difficult but it is advised
you attempt it. Using the skills from the previous exer-
cise, research what ”fibbonacci” numbers are and write a
program to produce a number of them determined by the
input.

Resources & Further Reading
‘http: // homepages. herts. ac. uk/ ~ db12aba/ ’ – All
content from these sessions updated weekly.

‘http: // code. org/ ’ – A good resource testing your
programming skills.

‘http: // stackoverflow. com/ ’ – Highly recommended
online help for programmers (NOTE: Employers are
interested to know whether you’re an active member of this
site!).

‘http: // www. mathsisfun. com/ numbers/ factorial.
html ’ – Resource for what factorials are.

2


