
PAL University of Hertfordshire

Consolidation 11 – Week 12 – February 2016 –

Aim & Objectives
• Discuss previous session

• Lists & Arrays

• File handling

• Advanced Tasks

• Look forward to next session

Introduction
In this session we will be discussing multiple topics, includ-
ing lists, arrays, file handling and how we can start to bring
these together for projects. There’s both an element of re-
vision of current topics covered in lecture and learning new
ways to use these to achieve interesting goals.

Exercise - Lists & Arrays
Firstly, we need to discuss what we mean by these two dif-
ferent types of data:

Arrays
Arrays are extremely simple collections, where usually they
are a dedicated piece of memory allocated linearly in RAM.
This means you tend to see something like the following:
[ 1 ][ 2 ][ 3 ][ 4 ][ 5 ][ 6 ]

For those of you that have studied how memory can be used,
you may know that the allocated memory could contain
pointers to a larger set of data, or be the actual data itself
if it contains an array of integers for example. The usual
description is as follows:

• Change contents of array at a given position (usually
in the format ‘name[i] = new-value’)

• Get the contents from a specific position (usually in the
format ‘variable = name[i]’)

• Requires some kind of memory allocation so the space
is reserved, where the size to be dedicated has to be
specified when the array is first declared

Lists
Lists are a different kettle of fish, although they sometimes
appear to do the same job as arrays. Lists offer lots of
additional methods that usually far extend on the basic ca-
pabilities of arrays, usually:

• Appending – Behind the scenes this could be using
methods such as linking, copying the array to another
location with one more space or many other methods

• Delete value at index – The additional feature this adds
to changing its value is moving all the other elements
of the array across.

• Concatenating – This is typically putting two arrays
together as one, Strings can be looked as an example of
where this works, for example: ‘variable = "Hello"

+ " World"’

Of course there are many other features which we’ll exper-
iment with, but the important thing to realise is that we
can think of a list as a wrapper for arrays, extending the
normal capabilities.

In Python, these are just some of the ways of using lists:

• ‘array.append(elem)’ – Adds something to the end of
the array.

• ‘array.insert(index, elem)’ – Inserts an element at
a given position.

• ‘array.remove(elem)’ – Removes the first element
from the list that matches the one specified (slow).

• ‘array.pop(index)’ – Removes an element at the
given position of the list and returns it.

• ‘array.indexelem’ – Returns the index of the first el-
ement found.

• ‘array.count(elem)’ – Returns a count of how many
times an element appears in the list.

• ‘array.reverse()’ – Reverses the elements in the list,
so that a‘[0..N ] = a[N..0] and a = a‘.

Naturally, nothing replaces reading the documenta-
tion at: ‘https: // docs. python. org/ 2/ tutorial/
datastructures. html ’.

”Data Structures”
This phrase is used lightly. In any real application, it’s ex-
pected that you’ll be using a database to store your data
and not an in RAM database. Data structures are a com-
plicated subject in their own right, which is why Databases
are a module on their own. Relationships between data can
be extremely complicated.

Luckily, because Python doesn’t worry about type until you
break a strict rule, you can nest arrays within arrays to cre-
ate much more complex structures. For example:
array = [["Frodo", 3, [1, 2, 3]], ["Baggins",

6, [4, 5, 6]], ["My Precious", 9, [7, 8, 9]]]

As you can see, it’s a trivial task to nest arrays within ar-
rays. Please be aware that your code can quickly become
extremely complex and these structures often don’t replace
a database and an object (more detail on these when we
come to Java).

Practice
• Demonstrate each of the list methods using the above

methods on the data set: ‘nums = [1, 1, 2, 3, 5,

8, 13, 21]’.

• Write a test to make sure each of these work! Print
a smiley face on success ‘:)’ and an unhappy face on
failure ‘:(’. Test that it is possible to fail your test!

• Write a nested list for your following infor-
mation: ‘Name, Student ID, PAL Session Time,

[Module Names]’.

Exercise - File Handling
It may come as no surprise, but file handling is extremely
important for holding permanent storage on computers. A
long time ago in a galaxy far far away, back way when the
”cloud” (a buzz term for a technology that has existed for
years) didn’t exist, people had to save things on their own
devices. Doing them allowed them to access files even when
the dial-up (mega slow internet) was switched off.

Today, in the background, this forms a silent but extremely
important part of what makes your browser faster (caching),
game save your data and where your videos buffer. RAM
is only so large, so in order for you to ”Netflix and Chill”
without the video freezing a buffer must be kept so that
sudden drops in the connection don’t ruin your videos. An
example of where this can’t be done would be live streaming,
especially noticeable when the internet isn’t all that reliable.

1



The following is not comprehensive, but should start to give
you an idea of the capabilities of files. Be sure to check out
the many more ways files can be utilized in the up and
coming lecture.

Reading a File
To read from a text file, you must open it like the following:
file = open("file.txt", "rt")

‘"rt"’ does not mean ”re-tweet”, but instead refers to ‘r’ead
‘t’ext.

Now we have your file opened, we can start to read the
contents a line at a time. This can be done with:
data = file.readline()

You can now read to your hearts content. Be careful to
close the file after you have done, to be kind to other users
of that file so they can now access it.
file.close()

Writing a File
First, we must open the file we wish to right. This can be
done with the following:
file = open("file.txt", "wt")

‘"wt"’ in this case is ‘w’rite ‘t’ext.

To write to the file, we can now use ‘file.write("Text
here")’. This writes the string to the file stream.

Lastly - and this is important - make sure that you close
the file. Different operating systems behave differently to
not doing this, but basically you need to safely close it.
Not doing so could lock the file (permission and lockout
mechanisms), mean that some of the text isn’t saved (hasn’t
flushed) and maybe even corrupt the file (harsh close whilst
writing when program terminates and drops the stream).

To get around this, simply send a close command when you
have finished with the file:
file.close()

Practice
To see how much you have absorbed, write an example pro-
gram to demonstrate the following:

• Take two numbers from the user, multiply them and
save them to a file called ‘sum.txt’. Make sure that
when you test it, you test it with suitably large num-
bers. How large a number can you actually multiply in
Python?

• Download the text file from ‘http: // www. cl. cam.
ac. uk/ ~ mgk25/ ucs/ examples/ UTF-8-demo. txt ’.
Write a search system that checks line by line for a
word or phrase written by the user and tells you want
line it was on. (Look at ‘grep’ or ‘awk’ for an example
of a programs that are good at doing this).

Exercise - Advanced Task
This is the stretch and reach challenge, where we’ll push the
limits on what we have learned. Before we can look at the
challenge, we first need an algorithm to calculate Pi. We’ll
use the Gregory-Leibniz series:

π =
4

1
− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+

4

13
− ...

This is known as an infinite series, you’ll never stop calcu-
lating this number! This makes sense, as Pi is infinitely long
(as far as we know) as the number is irrational, meaning it

can’t be expressed simply. As you can see, the top number
is 4, the bottom number increments every off number and
the + and − iterate every other number, infinitely to cor-
rectly produce Pi.

Your challenge, if you choose to accept it, is to create a
program from scratch to generate Pi to a specific accuracy
requested by the user. Once this is done, you’ll want to
save this number to a file. If you feel really confident, you
may want to figure out a way of saving current progress of
number generation.

Resources & Further Reading
‘http: // homepages. herts. ac. uk/ ~ db12aba/ ’ – All
content from these sessions updated weekly.

‘http: // code. org/ ’ – A good resource testing your pro-
gramming skills.

‘http: // stackoverflow. com/ ’ – Highly recommended
online help for programmers (NOTE: Employers are in-
terested to know whether you’re an active member of this
site!).

‘http: // draw. io ’ – A very good, free online drawing tool
that exports to many formats, including ‘XML’ and ‘JPG’.

2


