
Study of Cellular Automata to Solve Travelling
Salesman Problem

Daniel Barry
School of Computer Engineering Science

University of Hertfordshire
Hatfield, Hertfordshire AL10 9AB
Email: danbarry16@googlemail.com

Abstract—The Travelling Salesman Problem is a yet optimally
unsolved, suitably complex problem in Computer Science that
this project aims to test. Here we ask whether it can be benefited
from biologically inspired systems, specifically cellular automata.
To achieve this, an algorithm is designed to show that CA can
potentially benefit NP complete problems with results close to the
performance of brute force search for a low number of nodes.

Keywords—Artificial Life, CA, TSP, Simulation.

I. INTRODUCTION

In nature it is not uncommon to see biological systems
that solve mathematical problems, whether “intentionally” for
some evolutionary gain or “unintentionally” as a side effect
of solving another problem [1]. If it is rewarding in the
evolutionary sense to solve a problem, there’s a good chance
a biological system will adapt to solve the problem in order
to survive.

The Travelling Salesman (or Salesperson) Problem, or TSP
for short, is generally considered a suitably difficult problem
in mathematics, hence a good problem to test the computing
power of Cellular Automata (CA). To clarify, any use of the
word “solve” in this study is not suggesting that the infamous
NP problem has been solved, merely that a solution that may
or may not be optimal has been found in the large search space
of TSP.

It has been shown that collections of agents are able to
solve the TSP problem, including ant colonies, mosquitoes,
bees and even bacteria [2] [3] [4] [5]. Another interesting
method includes using quantum inspired methods, again using
a natural system to solve a difficult computation problem
[6]. In this study we look to use these biological systems as
inspiration to the rules that drive cellular automata.

The following are the questions for the project:

• How can the performance of a TSP solver be mea-
sured, given that a CA may not end and may still be
active when a solution is found?

• Is there cases where a CA may be created that can
out-perform current methods?

• Is it possible to replicate methods found in current
literature, including TSP solvers inspired by biological
systems, general agents and CA?

It’s worth noting that these are in the order they are aimed
to be achieved. The last two items are much more difficult

than the previous two and will just serve as talking points for
the further research discussion on the possibilities these areas
present.

II. PROBLEM DESCRIPTION

The problem we are trying to solve is the travelling
salesman problem (or TSP for short), where one must travel
all of the nodes only once in the shortest path possible. This
project aims to look at how this can be done with cellular
automata and how good the results are that this method yields.

III. REVIEW OF LITERATURE

Looking at the article on “Cellular Automata” from “The
Computation Beauty of Nature” [7], we see that cellular
automata are generally limited to local searching in terms
of neighbours. Only looking at TSP from a local perspective
per node is partially why classical algorithms appear to fail.
Ideally, an algorithm would consider all viable options every
pass and perhaps more importantly, the effect of each move.

Inspired by the hodgepodge machine [8], a uniform expan-
sion from nodes may be interesting, but due to the nature of
TSP intersection would likely have to be inferred. If individual
information was to be kept about each node, then multiple
dimensions would be needed to keep their expansion data
separate. This would in turn imply a multi-dimensional search.
In the solution described later, an expanding neighbour front is
used to prevent the use of multiple dimensions to represent data
- especially when dimensions can be shared, hence making a
search much easier in terms of memory and time.

IV. DELIVERABLES

The experiment should be able to show the following:

Simulation – A delivery of a suitable CA simulation
environment for solving TSP problems with a checking system
to test whether the problem has been solved. This will look
at how the CA link the nodes and whether a connection has
been made.

Performance Measurement – An automated measure of
how well the system performs including how optimal a solution
is, how long the solution took to develop and how the solution
was reached. Of particular interest is whether the connections
change throughout the running time.

Solver Demonstrations – At the very least this study should
produce a way in which different methods may be compared



for further research in this field where different CA based
solvers may be tested on exactly the same problem.

Further Optimisation – This will consist of research into
further optimisations on existing methods. While there is
no certainty about the outcome, there will at very least be
discussion as to where we may look to next to better optimise
solvers.

V. EXPERIMENT METHODOLOGY

A. Measurements

Below are definitions for the concepts that will be measured
from the experiment.

Path Length – This will be the measure of how long the
path is for the CA solver, given as FS .

Solution Fitness – The solution fitness will be measured by
comparing a brute forced solution with an optimal path length
to the solution by the solver. Where the solution depends on
randomness multiple FSi

need to be collected, the average and
ratio shall be taken as follows:

FRATIO = FO(
1

n

i=1∑
n

FSi)
−1

Where F is fitness, FSi
is the CA Solver fitness given for

experiment i, n is the number of experiments and FO is the
optimal solution for the given problem (Brute Force). FRATIO

tells us how close the algorithm being tested is to being
optimal, represented as 1, or impossibly bad, tending towards
zero.

Time Taken – This will simply be time, t, where full updates
are measured as an iteration. NetLogo, the chosen simulator,
refers to time in “ticks” of the simulator - the time taken to
perform one update of an arbitrary length decided at runtime.

Information Entropy – This will be the measure of the
stability of the CA and randomness of the CA and therefore
whether a solution has been found, where we may be able
to derive some measurement of whether a problem has been
solved. This pull be done with the following:

H(X) = Hb(p) = −p log2(p) − (1 − p) log2(1 − p)

Where H is entropy, X is a discrete random variable, Hb(p)
is the binary entropy function and p is the uncertainty of a
given position. Because we’re concerned with how our system
develops over time, we’ll use a sliding window to encapsulate
how the system evolves. The sum of entropy for each cell
finally gives us the entire picture with the following equation:

H(X)pt
=

1

N

x=0∑
N

−ptx log2(ptx) − (1 − ptx) log2(1 − ptx)

Here N is the total number of bits to be checked which in this
case is the number of cells. We now look at the bits at time t,
where x denotes a one dimensional position we iterate over.
We then look at:

∆H(X)p =
2

√
(H(X)t −H(X)t−1)

2

Where ∆H(X)p ≥ 0 and ∆H(X)p ≤ 1. Here we look
at whether ∆H(X)p is close to zero to detect whether the

simulator is stable and therefore stoppped. Note how the entire
world is treated as a 1-dimension string - we imagine a 2-
dimension space filling curve where order doesn’t matter.

Changes in Node Connections – This will be a simple
measure of how many changes occur before a solution is found,
where we use:

ChangeCount

!(NodeCount)

It is expected that only Brute Force should reach 1, any solvers
over this limit are worse than checking every solution which
indicates something is terribly wrong.

B. Data Representation

(a) Moore neighbourhood as seen in the Game of Life [9]

(b) An example of how the environment will be presented. Non-white
cells indicate activity, white represent inactive cells and blue cells are
the TSP nodes for the purpose of demonstration.

Fig. 1: Proposed Environment

1) Diagrams: The representation in (a) is the format the
rules will be explained where the rules are formulated with
respect to the cell being inspected, p0,0 or px, y for clari-
fication. Because of the complexity of the rules, the search
will actually be done in increasing diameter, an extension to
Moore’s original eight neighbour concept.

The other representation in (b) is used for a more global
explanation of how an environment has been set-up, including
information about nodes and distribution of cells. In the cells
will be numbers representing their individual summed value.



C. Algorithm

1) Inspiration for algorithm: Partially, the inspiration for
the algorithm was the hodgepodge machine. It looked promis-
ing in the respect it expanded out and the centre of a swirl
could be a node reaching out to another node.

2) Considered Algorithms: The following are ideas consid-
ered after a join has been detected to allow other joins to also
be detected.

Rule continue – This was the first method tried and
unfortunately runs into issue after not much time as nodes
begin to interact in strange ways, removing the valleys the
method relies on.

Detract from centre of node – Detracting from the centre
of one of the nodes proved not be successful either, as this
also made the future connections not clear.

Remove trace of joined pairs – This also didn’t work,
as again no clear connection could be made after the first
connection pair.

Stop weakest node expanding – This almost looked suc-
cessful, but after a short while this was also unsuccessful.
The previous connection remained strong whilst no other
connection could be made.

Stop weakest and retract environmental affects – This was
the method finally decided settled on as it was the first to show
results. Looking at it now, it’s now the most obvious solution.
It makes sense that removing the effects of the weakest, or at
least one of the nodes, would make it behave as if it wasn’t
there and allow a new connection to be made.

3) Decided Algorithm: Step 1 – We increment the sur-
rounding cells at a distance relative to the time passed, in this
case ticks, where we sum with the ticks that have passed.

For example, For t = 0, p(0,0)+ = 0.

For t = 1, p(−1,−1)+ = 1, p(0,−1)+ = 1, p(1,−1)+ =
1, p(−1,0)+ = 1, p(0,0)+ = 1, p(1,0)+ = 1, p(−1,1)+ = 1,
p(0,1)+ = 1 and p(1,1)+ = 1.

The solution for t = 2 is as follows:

p({−2..2},−2)+ = 2, p({−2..2},−1)+ = 2, p({−2..2},0)+ =
2, p({−2..2},1)+ = 2 and p({−2..2},2)+ = 2

Note that this is still relatively easy for a computer to
perform even with very large numbers as loops can be im-
plemented to make this process or looking up cells relatively
trivial. Another method would be to look at the closest
neighbour and implement their original value add one. This
would require multiple dimensions to store the data and would
make the algorithm much more complex, but in reality this is
what we’re simulating.

Step 2 – The next step is to test for a join, if no join is
detected then we continue with Step 1. To detect a join between
two nodes, we first consider whether they share the same value
at p(0,0) from their perspective. If this is true then they share
a common bridge as the following diagram demonstrates:

Fig. 2: An example of how two nodes may be joined.

As can be seen in the diagram, they clearly share a bridge
of a common value which is 2 which is also the same value as
the nodes. It could be possible to use a flood-fill to also find
the optimal patch between two nodes but this project does not
concern itself with this issue and looks only for the simple
sharing of node values.

Step 3 – Given there is a join, we must work out which of
the nodes is the “weakest” by summing the nearest neighbours.
The node with the lowest sum is the weaker node as there
are fewer potential local connections, therefore we do the
following:

1) Undo the effects the weakest node had on it’s envi-
ronment.

2) Prevent the weakest node from doing any future
expanding.

3) Draw a line between the two nodes to show a join
has been made.

We then continue to Step 4.

Step 4 – Continue with Step 1, unless entropy is zero and
the simulation has stabilised - in which case cease processing.

D. Experiment Set-up

Below is a brief description of the desired simulation set-
up:

Nodes – Nodes will only take the form of just one cell
so that connections may be directly made in a semi-efficient
manner for future flood fill purposes.

CA – Each shall be represented by a single patch and
evaluated independently of one another.

Representation of solution – This shall be done using lines
across the cells.

CA Edge Scenario – The edge will not be updated in
the environment so will remain at it’s starting condition. This
means that special rules are not required for the edge scenario.

CA Stop Condition – This will be done with a visual
inspection although this is equivalent of comparing the change
in entropy of the monitored area.

Visualisation of patch value – This is done with ((x%13)∗
10) + 15, which loops through the bright colour space in
NetLogo. This does not uniquely assign a value per patch but
does provide a reliable way of seeing where potential “valleys”
may reside in the map.



E. Requirements

1) Required Facilities: Development will be done in a
Linux environment along with use of the NetLogo simulator.
Code will be written in NetLogos own language.

2) Knowledge Areas: The following knowledge areas will
be required in order to successfully deliver the project:

• Simulator - NetLogo, chosen for it’s simplicity and
reliability [10]

• General software engineering

• General knowledge in area of cellular automata

Fig. 3: Capture of NetLogo simulation running a debug version
of a simple implementation of Conway’s Game of Life [11].

VI. RESULTS

(a) Problem = 0, T icks = 1
The starting position of nodes.

(b) Problem = 0, T icks = 32
First unique solution.

(c) Problem = 0, T icks = 32
Second unique solution.

(d) Problem = 0, T icks = 32
Third unique solution.

(e) Problem = 0, T icks = 32
Fourth unique solution.

(f) Problem = 0, T icks = 32
Fifth unique solution.

Fig. 4: The many different ways in which a single solution
may be solved.

Problem 0 1 2 3
Samples 40 40 40 40

Successful 27 33 14 26
Successful (%) 67.5 82.5 35 65

Average Solution 49.8 22.8 49.4 36.7
Brute Force 47.2 19.3 49.2 34.4

Ratio 0.95 0.85 1.00 0.94

Fig. 5: The results as calculated in the appendix.



VII. ANALYSIS

As can be seen in figures 4b, 4c, 4d, 4e and 4f - there
is plenty of variation in how a solution is reached. This is
to do with the “asynchronous” nature of NetLogo, where no
guarantee of execution order can be put on the code when
referencing agents and patches. Interestingly, despite the CA
operating differently each time because of this, the solution
appears to be the same when looking at low numbers of nodes.

There is another peculiarity to be addressed which is seen
in figure 4f, where a solution is not always found for the
problem. This is because of the order in which the nodes are
connected, where a certain order means that no optimal joins
are left due to the method used for joining nodes together.

Now to the results of the equation in figure 5, we see that
a 3 connection solution isn’t always produced. In the results
these incorrect solutions are removed, but we must bare in
mind that the cellular automata rules doesn’t always produce
a solution due to the nature of NetLogo. Problem 2 is worrying
with only a 35% success rate in finding a viable solution.

The solution ratio compared with the most optimal solution
yielded by brute force search is above 85% in all cases.
On inspection of the nodes that are connected during the
simulations, if we make a Hamiltonian cycle a much higher
percentage of the solutions match the brute force Hamiltonian
cycle. Again, this is suspected to be related to the order in
which NetLogo addresses patches as opposed to some other
effect.

VIII. LIMITATIONS

Below are the limitations found whilst working on the
project:

NetLogo Updating – NetLogo appears to use a method of
asynchonous update as opposed to using synchronous updating
of patches, which means the solution may not always be the
same each time and changes depending on where is updated
fast. It is unclear why this is done, but it may be to force
non-synchronous solutions or as a performance optimization
with fencing computer memory. Either way, this was not seen
before hand as a potential issue with NetLogo and therefore
was only found to be a concern later.

Visualisation – Currently it is hard to see the exact value of
the patches in real time, or even paused, as the colours don’t
represent the differences clearly when multiple nodes interact.

Found Solution – The model isn’t aware when a solution
has been found as planned, therefore it’s unclear how many
steps to run the model for before stopping.

IX. CONCLUSION

From the results in figure 5, it’s extremely clear that the
cellular automata algorithm posed in this project is much better
on average than random search. The algorithm is relatively
close to the optimal solution given with the brute force search,
where results are very close to 1.

It’s clear that cellular automata certainly have potential in
solving the travelling salesman problem, where this seems to

come from nodes interacting with other nodes whilst connec-
tions are being made. Ideally this is the property that’s wanted
from an optimum solution to TSP, where each connection is
weighted with the consequences of each other connection.

X. CRITICAL EVALUATION

There are a few aspects of the project that are much clearer
now the project has been completed and these points will be
iterated in the following paragraphs.

The use of NetLogo was something that was supposed
to aid the project but instead has hindered it as it’s a very
comprehensive learning tool but doesn’t appear to have the
more traditional programming concepts natively supported by
C type languages. Such things include arrays/lists/tables or the
forced scope on how objects in the model can be referenced.
A lot of these limitations have led to “hacks”, i.e. very clear
breaking of the intended use, making using NetLogo for this
project more of a challenge than an aid. The visualisation it
offers was perhaps the least important and easily replicated
feature to program. Perhaps a more suitable language would
have been Java, offering many of the features I desired from
the language and ultimately being the engine NetLogo runs in.

The algorithm that was designed to be simulated wasn’t
designed with asynchronous updating in mind which is part
the reason why the cellular automata offers different results
each time it is run despite not using any randomness or
different starting conditions. Again, it would have been much
better to have been able to control that part of the simulation
environment.

A number of features were not implemented due to a mix-
ture of time constraints and NetLogos non-standard program-
ming. Features that were not included as originally planned
include how connections change over time for certain models
of cellular automata, automated checking to see whether a
solution has in fact been found.

There was another plan to learn from and optimise on
existing algorithms and whilst this project did concern itself
with looking at existing ideas, it was unable to develop on
existing ideas directly as unfortunately there was no time given
how difficult the features are to implement.

XI. ACKNOWLEDGEMENTS

I would like to acknowledge the https://draw.io website
for providing a free and easy to use online tool for drawing
diagrams seen in this project.

XII. FURTHER DISCUSSION

Given more time to work on this project, it would be good
to solve many of the issues identified in the Limitations and
Critical Evaluation sections, as well as increase the number of
nodes and really challenges the algorithm. It is expected that
performance will drop when number of nodes increases, but
it’s important to see how this compares to other algorithms
whose performance also decreases given a large number of
nodes.

A subject that is of particular interest to develop further
would be to experiment with the other rules that most likely



exist - some that are also capable of also producing solutions
using cellular automata. Using larger numbers of nodes cou-
pled with different rules would be a good way to test new
solutions.

REFERENCES

[1] Runarsson, T.P. “Evolutionary Problem Solving” University of Iceland
29 January 2001

[2] Dorigo, M., Gambardella, L. M. “Ant Colonies for the Traveling
Salesman Problem” Universit Libre de Bruxelles

[3] Feng, X., Lau, F.C.M., Gao, D. “A New Bio-inspired Approach to the
Traveling Salesman Problem” East China University of Science and
Technology

[4] Agrawal, P., Kaur, H., Bhardwaj, D. “Enhanced Bee Colony Algorithm
for Solving Travelling Salesperson Problem” International Journal of
Control Theory and Computer Modellin Vol.2, July 2012

[5] Baumgardner, J., et al. “Solving a Hamiltonian Path Problem with a
Bacterial Computer” (Journal of Biological Engineering) Vol.3, 24 July
2009

[6] Draa, A., Meshoul, S. “A Quantum Inspired Learning Cellular Automa-
ton for Solving the Travelling Salesman Problem” 12th International
Conference on Computer Modelling and Simulation 2010

[7] Flake, G.W. “The Computational Beauty of Nature” MIT Press pp.231-
259, July 1998

[8] Dewdney, A.K. “Computer Recreations - The hodgepodge machine
makes waves” Scientific American pp.86-89, 1 August 1988

[9] Sharma, V., DEv, A., Ral, S. “A Comprehensive Study of Cellular
Automata” International Journal of Advanced Research in Computer
Science and Software Engineering Vol.2, No.10, October 2012

[10] Wilensky, U. “NetLogo” Northwestern University 1999. URL:
https://ccl.northwestern.edu/netlogo/

[11] Hua, D., Pelikan, M. “Variations on Conways Game of Life and Other
Cellular Automata” University of Missouri-St. Louis July 2012


