
sensors

Article

An Information-Motivated Exploration Agent to Locate Stationary
Persons with Wireless Transmitters in Unknown Environments

Daniel Barry * , Andreas Willig and Graeme Woodward

����������
�������

Citation: Barry, D.; Willig, A.;

Woodward, G. An Information-

Motivated Exploration Agent to

Locate Stationary Persons with

Wireless Transmitters in Unknown

Environments. Sensors 2021, 21, 7695.

https://doi.org/10.3390/s21227695

Academic Editors: George

Nikolakopoulos, Pablo

Rodríguez-Gonzálvez and Diego

González-Aguilera

Received: 4 October 2021

Accepted: 15 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science and Software Engineering, University of Canterbury, Christchurch 8020, New Zealand;
andreas.willig@canterbury.ac.nz (A.W.); graeme.woodward@canterbury.ac.nz (G.W.)
* Correspondence: dan.barry@pg.canterbury.ac.nz; Tel.: +64-3-369-4999

Abstract: Unmanned Aerial Vehicles (UAVs) show promise in a variety of applications and recently
were explored in the area of Search and Rescue (SAR) for finding victims. In this paper we consider
the problem of finding multiple unknown stationary transmitters in a discrete simulated unknown
environment, where the goal is to locate all transmitters in as short a time as possible. Existing
solutions in the UAV search space typically search for a single target, assume a simple environment,
assume target properties are known or have other unrealistic assumptions. We simulate large,
complex environments with limited a priori information about the environment and transmitter
properties. We propose a Bayesian search algorithm, Information Exploration Behaviour (IEB), that
maximizes predicted information gain at each search step, incorporating information from multiple
sensors whilst making minimal assumptions about the scenario. This search method is inspired
by the information theory concept of empowerment. Our algorithm shows significant speed-up
compared to baseline algorithms, being orders of magnitude faster than a random agent and 10 times
faster than a lawnmower strategy, even in complex scenarios. The IEB agent is able to make use
of received transmitter signals from unknown sources and incorporate both an exploration and
search strategy.

Keywords: search and rescue; wireless transmitters; UAV; drone

1. Introduction

In the last few years, unmanned Aerial Vehicles (UAVs) spurred substantial interest,
as they can improve the delivery of existing services or enable provision of new services
in a wide range of fields, including logistics [1], search and rescue (SAR) [2–4] public
safety communications [5,6], infrastructure monitoring [7], precision agriculture [8,9],
forestry [10,11], and telecommunications [12,13].

In this paper, we explore the use of UAVs in SAR scenarios in an unknown and pos-
sibly large terrain, with the intention of reducing time for locating victims. In particular,
we consider a case where an individual UAV has to search for an unknown number of
stationary persons in an outdoor area. We assume that the UAV is equipped with appropri-
ate sensors to detect persons, e.g., based on a downward-facing camera using visible light
or infrared. These sensors allow the UAV to decide the presence or absence of a person
only in a relatively small area determined by the visual angle of the camera and the flying
height of the UAV. With such a camera alone, to maximize the certainty that all persons will
be located, the UAV would have to pick a path that is “dense”, i.e., which guarantees that
each point is observed at least once through the camera (e.g., a ’lawnmower’ path). Such a
dense path may require substantial time to travel. A key assumption in our work is that
each person carries a wireless transmitter which emits signals frequently. The transmitter
could, for example, belong to a cellphone, it could be a WiFi transmitter or an emergency
beacon. We do not assume that the searching UAV has any a priori knowledge about the
specific wireless technologies that any person may be using or channel properties, we only
assume that the UAV is able to detect transmissions in a given frequency range, without

Sensors 2021, 21, 7695. https://doi.org/10.3390/s21227695 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5384-6024
https://orcid.org/0000-0002-0042-5207
https://orcid.org/0000-0003-2485-8813
https://doi.org/10.3390/s21227695
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227695
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227695?type=check_update&version=1


Sensors 2021, 21, 7695 2 of 23

having the ability to extract further information out of these transmissions. The searching
UAV is equipped with appropriate receive circuitry, and hence it becomes possible for the
UAV to detect the presence of a person from a distance, even when the terrain is cluttered or
when the target (person) is outside the field of view of the UAV camera system. Conversely,
when the UAV spends some time in a particular area and did not receive any wireless
signals, then the UAV can conclude (with some uncertainty) that there is no person within
the search scope or radio range of the UAV. Hence, the UAV does not need to spend any
further time for a detailed inspection of the area using the downward-facing cameras, and
it can move on to less well explored areas, with the intention of ultimately shortening the
time required until the persons were located, therefore giving it a ’radio advantage’. While
searching for persons, the UAV will also have to explore and map the terrain, which is not
known in detail to the UAV when the search operation starts. We do assume, however, that
the UAV knows some “bounding box” around the search area and can locate its position
accurately via a technology such as GPS.

The overall goal in this application clearly is to minimize the average time until all the
persons were located (minimum time search). At the same time, in a real application where
lives may be at stake, certainty and thoroughness are clearly essential. This (and the case of
persons not equipped with wireless transmitters) can be resolved by using a second UAV
which just follows a “dense” path as described above (perhaps repeatedly), and which
does not need to interact with the UAV searching for wireless transmitters, except perhaps
to avoid collisions. Aspects related to this second UAV and the interaction between the
two UAVs are not included in the scope of this paper.

The considered search problem is subject to substantial uncertainty. Besides the un-
certainty about the terrain and the number of persons with wireless transmitters (which
could be any natural number including zero), there is also uncertainty about a number of
other factors, including the radio technologies used by the transmitters and their trans-
mission powers (both of which could be different between different transmitters), and the
uncertainty about the wireless propagation conditions. Transmit power and propagation
conditions together determine the transmission range of a transmitter.

This paper makes the following main contributions:

• We present a discretized system model and formulation for the problem of searching
an unknown number of wireless transmitters in a possibly large and unknown area
with obstacles, including a radio model that includes limited-scale propagation char-
acteristics like path loss. To the best of our knowledge, the search problem described
in this paper was not widely considered in the literature.

• We describe the design of a novel search algorithm, which is loosely based on the
information-theoretic concept of empowerment, and which incorporates limited as-
sumptions for properties of the wireless channel. Our algorithm makes explicit the
uncertainty present in the problem setting by modelling important properties of
transceivers (e.g., their transmit power and frequency of signal/pulse emissions)
and of wireless propagation as finite-range probability distributions, which may also
encode any prior knowledge.

• We conduct a performance analysis of our algorithm and compare it against two
baseline algorithms, one of which conducts a search along a “dense” path (note that
we have not found any algorithm in the literature which addresses the same problem).
In this analysis we assess the impact of important system parameters.

The remaining paper is structured as follows: we begin by introducing related work and
discuss the related approaches that exist in the literature. We then give a description of the
system model, which includes the search area, transmitter properties, search agent properties
and the key performance measures. In the algorithm section we introduce our algorithm
structure, the internal algorithm modelling, the model update function, the action selection
process. Next, we introduce the two baseline algorithms we compare our search algorithm to,
a random walk behaviour and a lawnmower behaviour. We then describe our simulation
setup, specifically the parameters used for the experiments. After this, we provide our



Sensors 2021, 21, 7695 3 of 23

results for each batch of experiments, and more specifically, what was tested and what the
results show. Lastly, we finish the paper with discussion and conclusion sections.

2. Related Work

The use of UAVs in real-world target location discovery showed promise in both
single-agent and multiagent use cases [14]. Methods that focus on trajectory planning in
a continuous space, where UAVs carry properties such as velocity, acceleration or other
realistic movement modelling characteristics were shown to be effective in smaller search
environments, but it remains unclear whether these search methods are able to scale to
larger search environments. In the paper by Viseras et al. [15], we see that comparing
a novel algorithm implementation to a random search implementation is an existing
approach for benchmarking new algorithms, as we did in this paper.

One of the key assumptions made in this paper is that we are unable to locate the
source of a detected transmitter, the agent only knows that it detected a signal and cannot
uniquely identify it or the received power, an assumption made due to the inherent issues
associated with determining distance. In work by Careem et al. [16], it is shown that it
could be possible to approximate the location of a static target using an omnidirectional
antenna by receiving a signal from a single device from multiple locations. To achieve this,
they propose a method to uniquely identify the signal from the transmitter and make two
or more detections, which are then used to determine an approximate location of the target.

For simple or known environments with sensor strength information, a particle filter
method is quite effective in locating multiple targets with unknown properties [17]. With a
priori information about the environment, a particle filter can be used in conjunction with
an entropy reduction method to reduce the uncertainty of a single target’s location [18].

A similar problem is locating regions of interest (ROI), where the objective is to ensure
some target exists within an area [19]. Given information about received sensor strength,
we see some approaches map contours and perform a gradient descent method to locate the
signal source. For this, one must assume a simple environment, accurate sensor strength
measurements and assume there is no environment induced effect on the transmitter signal,
such as occlusion. In practice, however, we expect signal loss and reflection, hence signal
strength itself cannot be reliably used as a sole search method [20].

Whilst we mostly concentrate on minimizing time in our model, trajectory-based
planning algorithms also can consider energy usage as an optimization parameter during
search [21]. Given the current hardware limitations that limit flight time, energy use is an
important consideration for search, although is outside of the scope of the work discussed
in this paper.

Minimum time search (MTS) planners are algorithms that aim to minimize the time to
achieve one or more goals [22]. Many such approaches adopt a Bayesian search method,
where a common assumption is that the target is static, which of course is not true of
all human search targets. The reason for this assumption is to reduce algorithm search
complexity and is also the approach in this paper. Existing approaches assume a single
target, some sensor that reveals information approximating to distance and a relatively
small and simple search environment [23,24].

Discretizing the problem space allows for multiple classic search methods to be used.
The environment is divided into patches (a series of smaller uniformly sized areas) and the
UAV (agent) chooses from a finite set of actions in each discrete time step. There are several
potential benefits of this approach, including the ability to simplify computation and take
actions more quickly in the real world with limited onboard computation. Whilst this
approach makes the exploration of larger, more complex spaces possible, it abstracts the
problem space such that the energy consumption of the UAV cannot be easily calculated.
An additional limitation is that for larger environments that were discretized, we see larger
amounts of memory are used for storing information about the model.

One approach utilizes occupancy maps with a genetic algorithm for path planning [25].
In our opinion, whilst this approach is suitable for small search spaces, the computation



Sensors 2021, 21, 7695 4 of 23

time required to find suitable solutions in large search areas will become too high. It is not
clear that this approach is able to larger environment sizes.

Another approach we considered is a partially observable Markov decision process
(POMPD), where the agent looks to maximize a reward function given some action se-
quence in the next time steps [26,27]. Defining good reward functions is quite difficult
and one typically has to make domain specific optimizations. It is difficult to implement a
reward function that does not detect or locate a target directly given some action sequence,
but instead choose less optimal near-future actions in favour of greater predicted gains. We
suspect the algorithm we present in this paper could also be modelled as a form of POMPD
hybrid with empowerment [28], where empowerment solves the reward function problem
by means of intrinsic motivation (IM) [29]. The core idea of IM is that a reward function is
not strictly specified and is simply the solving of an internal optimization problem, rather
than an external one. As a result, richer and more complex behaviours can be achieved
that are not task dependant.

In the approach described by Lanillos et al. [30], we see a more similar algorithm to
the one we describe in this paper, where they describe updating a Bayesian model and
the UAV agent maximizes the estimated probability of locating a target given an action
sequence. This approach allows their UAV agent to effectively locate targets in a simple
environment. Their algorithm does not address the issues of signal detection, obstacle
modelling and manoeuvring or multiple target search problems. The algorithm is also
unable to take paths that do not directly reward the agent within n time steps, if those
paths allow the agent to discount large areas quickly, a problem addressed in our approach.
Similarly to their approach, the authors of this paper also explored a discounted time reward
in a previous work (to favour near-future discoveries), but found this negatively impacts
the multitarget case [31].

3. System Model

In this section, we describe our main assumptions about the search area, wireless
channel properties, and the search agent.

3.1. Search Area

We are given a rectangular search area, and we consider the search problem as a
two-dimensional problem for the purpose of simplicity. The search area is discretized
into quadratic patches of side length l meters, where l is typically thought of as 2 to 5 m
(this is thought to be a reasonable assumption for an area that could be detected with a
downward-facing sensor). The choice of l should be made such that radio signals have
approximately constant strength over such a patch and the patch can be covered by the
downward-facing camera (the height of the agent and the field of view (FOV) allow for
appropriate coverage of the area).

We identify one corner of the search area as the “upper-left corner” and anchor a
coordinate system in that corner, which counts in numbers of patches. In the horizontal
or x-direction there are Lw patches, and in the vertical or y-direction there are Lh patches.
We will express locations of agents or transmitters in terms of such patches, i.e., a location
(x, y) refers to the x-th patch in horizontal direction and the y-th patch in vertical direction.
Hence, x is an integer value between 0 and Lw − 1, and y is an integer value between 0 and
Lh − 1. We refer to the overall search area or the set of all patches as

W =
{
(x, y) ∈ N2

0 : 0 ≤ x ≤ Lw − 1, 0 ≤ y ≤ Lh − 1
}

There can be obstacles present in a patch and we assume that an obstacle occupies a
patch completely or not at all. The agent cannot enter a place occupied by an obstacle, and
a wireless transmitter also cannot be placed there. In this model, we assume that we do not
have to deal with the case of a transmitter obstructed by something such as rubble. This is
to reduce model complexity.



Sensors 2021, 21, 7695 5 of 23

The numbers and positions of obstacled patches are not known to the agent a priori.
To rule out pathological cases, we assume that transmitters are always reachable, i.e.,
they are not fully encircled by obstacles in a way that prevents an agent to enter the
transmitter’s patch.

3.2. Transmitters and Wireless Propagation

We make several assumptions about transmitters in the world:

1. There can be zero, one, or more persons which may need to be rescued, each having
a transmitter.

2. There is at most one transmitter and person pair in each patch.
3. Each of these persons is equipped with a wireless transmitter, which frequently emits

wireless signals in one of a well-known set of radio frequencies. Each transmitter can
be using one of a pre-defined set of wireless technologies (e.g., WiFi or Bluetooth or a
cellular technology).

4. A particular wireless transmitter transmits its beacons with a transmit power p (in dBm)
that is being taken from a finite set of allowable transmit powersP =

{
p1, p2, . . . , pNP

}
,

with all the values given in dBm. The set P is known a priori to the agent.
5. A particular wireless transmitter transmits its beacons frequently, with an average

beacon transmission rate of τ beacons per second, where τ is being taken from a finite
set of allowable beacon transmission rates T =

{
τ1, . . . , τNR

}
, with all values given

in Hz. The set T is known a priori to the agent.
6. It is not known a priori to the agent how many persons or transmitters there are and

what their chosen transmit powers and beacon generation rates are.

For each of the transmitters described above, we make the following assumptions
about wireless signal propagation:

1. Suppose a transmitter is located in patch (x, y)—for the sake of definiteness let us say
at the centre of the patch—and an agent is located in patch (x′, y′), again in the centre.

2. When there is an obstacle in the direct line-of-sight path between transmitter and
agent, then the signal is completely blocked and the agent does not hear anything.
This is a worst-case assumption.

3. Otherwise, the channel model between a transmitter in patch (x, y) and an agent in
patch (x′, y′) follows a modification of the standard log-distance model [32], which
accounts for the reference distance (which we assume here to be one meter). In this
model, the total path loss at a distance d ≥ 1 m and for given path loss exponent γ
and given path-loss L at the reference distance is given by (in dB):

h(d|γ, L) =

{
L + 10 · γ · log10(d) , if d ≥ 1

L , otherwise

We assume that neither the path loss exponent γ nor the initial path loss at the
reference distance, L, are known a priori to the agent. However, as an approximation
we assume that they both are taken from a finite set of eligible values. In particular,
the path loss exponent γ is taken from the set G =

{
γ1, . . . , γNE

}
, where NE is the

number of allowed path loss exponents, and the initial path loss value L is taken from
the set L =

{
L1, . . . , LNL

}
, where NL is the number of allowed path loss values. The

sets G and L are known a priori to the agent. In this model, we did not include a
shadowing term (often modelled as lognormal fading).

4. As a result, when the transmitter uses transmit power p (in dBm), and the distance
between transmitter and agent is d, then the received signal power at the agent (in
dBm) is given by

Pr(d|p, γ, L) = p− h(d|γ, L)



Sensors 2021, 21, 7695 6 of 23

and the signal-to-noise-ratio (SNR) at the agent is then given by:

S(d|p, γ, L) = Pr(d|p, γ, L)− N0

where N0 is the total noise power (in dBm).
5. Finally, we assume that while the details of wireless transmission and propagation

(transmit power p, beacon generation rate τ, path loss exponent γ, reference path
loss L) are not known to the agent, there exists some threshold distance Rmax > 0
between transmitter and agent, beyond which the agent is guaranteed to not detect
any transmission of a wireless signal. This value Rmax is known to the agent a-priori.

6. Notation: given a patch (x′, y′), denote by N (x′, y′) the set of all patches (x, y) 6=
(x′, y′) that have a Euclidean distance smaller than or equal to Rmax from (x′, y′),
where the distance of two patches is meant to refer to the distance between their
centre points.

3.3. Search Agent

We model a single search agent, which is initially placed in an unoccupied patch
not containing an obstacle in the upper-left corner of the environment, from which every
transmitter is reachable through a path of unoccupied patches. The search agent is a freely
moving UAV in three dimensions (such as a quad-rotor drone, not a fixed-wing drone)
with good manoeuvrability and the ability to perform sudden changes of direction. For
simplicity, we ignore acceleration and deceleration characteristics.

The agent has a highly reliable and accurate source of location (such as that offered by
a GPS receiver). Furthermore, we assume that the location tracking is good enough that
the agent can at all times determine its location with high accuracy, specifically it’s location
in the centre of a patch. We assume that the control mechanism required to achieve and
maintain a given target location can be accomplished via a model-free adaptive control
(MFAC) algorithm [33] or an active disturbance rejection control (ADRC) algorithm [34].
We consider problems regarding low-level motion planning and response to external
disturbances outside the scope of this work and refer readers to the cited papers.

The agent is also expected to know the location of the reference “upper left” corner of
the search area and the orientation of the reference frame in space. The upper-left corner is
the location the agent starts its search from. The agent can always calculate which patch it
is in from its current physical location in reference to this zero point.

The agent is equipped with three different kinds of sensors:

• A downward sensor (D), like for example a camera, is mounted at the bottom of the
agent and can inspect the current patch the agent is on. In particular, the downward
sensor can determine with certainty whether there is a person/transmitter in the
current patch or not.

• A vicinity sensor (B), like for example a LIDAR, which allows the agent to determine
its Moore neighbourhood, i.e., to determine reliably for all eight neighbouring patches
(suitably modified for boundary patches) whether or not an obstacle is present in
those. The vicinity sensor, however, does not give any information about the presence
or absence of transmitters in the neighboured patches. The purpose of this sensor is to
detect trees, buildings, power lines and large geographic features.

• A radio sensor (R) or radio receiver which includes an omnidirectional antenna. We
assume that we did not receive demodulation circuitry for specific technologies (as
these may add further weight to the agent, shortening its flight time), but rather that
we can only detect the presence or absence of energy in certain predefined frequency
bands. In other words, we can perform signal detection, but we assume that we do
not attempt actual demodulation and extraction of data.

With this array of sensors, we use the radio sensor to discover whether we may be
in the vicinity of transmitters, and the agent relies on the downward sensors to positively
confirm the presence and location of a transmitter (In a related problem, one could leave



Sensors 2021, 21, 7695 7 of 23

away the downward sensors, but in this case one would have to rely on getting multiple
signal detections at different locations (or using several parallel antennas) and on being
able to obtain signal strength information—with this information, the agent could estimate
the angle of arrival (AoA) [16] of the wireless signal and could aim to triangulate the
transmitter position from repeated AoA estimations taken at different positions. Since the
signal strength readings will be noisy, the AoA estimates will be noisy, too. Furthermore,
since we only assume that we can detect the presence or absence of signals but cannot
extract any information out of them, we would also have difficulties to distinguish whether
multiple signal detections originate from the same transmitter or possibly from several
transmitters located in the vicinity. This appears to become a very complex problem
encapsulated by blind-source separation, and the downward sensor is one method of
solving this problem).

We assume that the agent will not use receivers for specific technologies, but rather
a technology-independent detector (e.g., based on measuring power in certain frequency
bands). We do not make any specific assumptions about the detector, but we assume that
there is a smooth and monotonically increasing function φ(·) : R 7→ [0, 1], which maps
signal-to-noise-ratio (SNR) values given in dB to detection probabilities.

The agent moves with travelling speed v from the mid-point of one patch to the
mid-point of a neighbouring patch. When the agent has reached the mid-point of the
patch, it remains stationary for Ts seconds to take sensor readings. At the end of this sensor
reading time, the agent makes a decision as to which of the eight neighboured patches
to visit next (with obvious adjustments for boundary patches). The time Ts plus the time
the agent requires to move completely through a patch at speed v gives the overall time
T = Ts +

l
v that the agent stays in a patch. A tick is considered to be a single count of an

agent “teleporting“ from the centre of one patch to the centre of another. We do not model
the movement itself to allow the simulation to run faster than real time.

During the time period Ts the agent:

• Uses its downward sensor to check whether a transmitter/person is present or not in
patch (x′, y′).

• Uses the vicinity sensor to determine its Moore neighbourhood [35].
• Uses its omnidirectional antenna to detect wireless signals.
• Updates its internal model according to the update function, makes a decision about

the next patch to go next according to the action function and then moves there.

We describe the sensor readings by a triple (D, B, R) where:

• D ∈ {0, 1} is the output of the downward sensor, where D = 0 indicates that there is
no transmitter in patch (x, y) and D = 1 indicates that there is.

• B is the output of the vicinity sensor, it is an eight-tuple of Boolean flags indicating for
each of the neighbouring eight fields whether or not an obstacle (or block) is present in
that field.

• R ∈ N0 is the output of the radio sensor, it gives the number of radio beacons that
were detected during the time Ts the agent listened for radio signals while being in
patch (x′, y′).

3.4. Performance Measure

We measure the performance as the time taken to positively locate all transmitters
(visit patches containing transmitters), but not necessarily having explored the entire
environment. The agent is not aware of this measure, hence, they continue to explore the
environment until otherwise halted.

4. Algorithm

In this section, we introduce our algorithm Information Exploration Behaviour (IEB).
The algorithm is in part inspired by the concept of empowerment, which provides the
equivalent of an objective function without needing to strictly specify one [29,36]. This
means that an agent based on the principles of empowerment does not strictly need to be



Sensors 2021, 21, 7695 8 of 23

coded with the environment known a priori, making it suitable for complex and difficult-
to-define environments. Works based on the concept of empowerment were successfully
deployed to real-world agents that exhibit intelligent behaviour [37].

We begin with a brief overview of the algorithm in Section 4.1, define the agent’s
memory structure in Section 4.2, give an overview of the update process in Section 4.3,
define how an agent chooses an action in Section 4.4. Lastly, we discuss the algorithm
complexity in Section 4.5.

4.1. Overall Structure

Our algorithm operates in a time-discretized perception-action loop. During the t-th
time slot, the agent performs the following actions:

1. Move to the centre of a patch (x′, y′) and collect the sensor readings St as described in
Section 3.3.

2. Update an internal model representing the current belief about the presence or absence
of transmitters and obstacles in all the patches the agent is able to observe at the
position (x′, y′). More precisely, the model state from the previous round, Mt−1,
is combined with the sensor readings of round t, St, to give an updated model
Mt = g(Mt−1, St), where the function g(·) is the model update function.

3. After updating the internal model, an action At is chosen out of the currently available
actions in patch (x′, y′). The available actions are moving the agent into one of the
neighboured, nonobstacled patches. More precisely, to calculate an action At we
apply an action function f (·) to the current model state Mt and the current position:
At = f (Mt, (x′, y′)).

The algorithm has two distinct phases during search when computing f (·), the Search
Phase and the Discovery Phase. As explained in Section 3.3 we do not assume that the
agent is able to extract information out of received signals, and hence it cannot easily tell
how many transmitters contribute to a sequence of received beacons or what their specific
radio and propagation parameters may be. Hence, after hearing a signal, the agent can
only say with confidence that there is at least one transmitter within a distance of Rmax.
The parameter Rmax should reflect the largest possible distance within which detection
is feasible.

In the search phase, the agent takes actions that change its position in the environment
and tries to detect new beacons, with its chosen path aiming to reduce overall uncertainty
about transmitter locations as quickly as possible by generally preferring to go into less-well
explored areas. Once a beacon is detected and its location confirmed using the downward
sensor, we switch into the discovery phase, in which we perform a detailed and systematic
search of the neighbourhood to locate the transmitter (or transmitters) of the beacon.

4.1.1. Search Phase

The agent performs a search by maximizing predicted information gain based on
the current model Mt over a list of candidate paths, where a path is a list of eligible
actions to be taken in the first, second, etc. step, and then selecting the first action of
this sequence. The candidate paths are a random subset of all possible paths to reduce
computational requirements. Selecting actions that maximize predicted information gain
has the effect of minimizing model uncertainty, by confirming whether a transmitter exists
in any given patch. In the case an action cannot be selected, we use a further-field search (see
Section 4.4.4).

4.1.2. Discovery Phase

In this case, we found the location of one or more transmitters in the local area,
but cannot determine whether there are other transmitters in the vicinity. The radius
Rmax surrounding the located transmitter may also contain one or more transmitters,
meaning we must perform a more careful fine-grained search in the local area of the located



Sensors 2021, 21, 7695 9 of 23

transmitter to determine whether there is one or more transmitters. To achieve this, we do
the following:

1. Clone our current model M into M′—ignoring all patches that can be considered
outside Rmax (these can be zeroed).

2. Set all values in M′ that are not 0 or 1 (maximum certainty) to 0.5 (maximum uncer-
tainty), indicating we unsure about the location of a transmitter in this location.

3. Use a minimal implementation of the IEB algorithm where only the predicted infor-
mation within the area enclosed by Rmax is used to plan actions. During this search,
the agent does not act on detected signals for model M′. If signals are heard whilst
performing the search, they are processed by the global model M and can be acted
upon after the localized search, but are not acted on until the local discovery search
is completed.

4. Search until all values in model M′ are either 0 or 1, indicating each position was searched.
5. Update model M with the resulting internal belief values, found during the limited

area search performed with M′, such that the values within the area contained by
Rmax are updated.

4.2. Model Structure

We start with defining the data structure of our model. As explained in Section 3.1,
the environment is sub-divided into Lw × Lh patches, and we use the symbolM to refer to
the set of all patches—we clearly have |M| = Lw · Lh. For each patch (x, y) ∈ M we store
in our internal model two pieces of information:

• A real number Mx,y representing the current belief that a transmitter is in patch (x, y),
hence Mx,y ∈ [0, 1]. The value 0 represents the absolute certainty of there being
no transmitter on this patch, and 1 represents absolute certainty of there being a
transmitter on this patch (because it has been discovered through the downward
sensor). For the case of zero probability, there can actually be two different reasons:
the first reason is that we have detected an obstacle on that patch (recall that one of
our assumptions is that transmitters and obstacles never share the same patch—see
Section 3.1). The second reason is that there is no obstacle, but we have visited this
patch in the past and have used our downward sensor to confirm that there is no
transmitter. In doing this, we assume that our downward sensor is absolutely reliable,
i.e., it makes no error in confirming the absence or presence of a transmitter.

• A Boolean flag Ox,y which is only meaningful if Mx,y = 0 and which indicates which
of the previous two cases applies. Specifically, we set Ox,y = 1 if there is an obstacle in
patch (x, y), and Ox,y = 0 if there is no obstacle. This information about the presence
or absence of obstacles is mainly used in the generation of possible paths that the UAV
can take.

At the start of the search, all the Mx,y values are initialized with 0.5, reflecting maxi-
mum uncertainty as to whether or not a transmitter is present in any patch. Furthermore,
all the Ox,y values are initialized with 0. Note that there is no requirement that the Mx,y
values have to be normalized to sum up to one. This is helpful for a number of reasons:

• For large values of |M| a requirement for normalization would make most of the
numbers Mx,y very small, possibly leading to numerical difficulties.

• We do not have to carry out computations for the purpose of normalization after each
update of the Mx,y values.

• It is not obvious how normalization can be given a suitable interpretation if several
transmitters are allowed.

We will often write the collection of the Mx,y for all |M| patches as a matrix M or Mt,
similarly we use the matrix O or Ot for the collection of all flags Ox,y. M or Mt denotes the
state of agents internal model, which includes both M and O.

If we want to determine whether it is likely a yet to be located transmitter may
still exist and whether the agent may stop searching, it is possible to evaluate the global



Sensors 2021, 21, 7695 10 of 23

uncertainty of the search area by calculating the likelihood of a transmitter remaining
undetected. This would be achieved by checking the entropy of each patch containing
a transmitter is significantly reduced, such that it can be said with high confidence that
either a transmitter exists or does not exist for any given patch in the environment. It is
also possible to keep searching until all patches within the environment were searched.

4.3. Model Update Function

We now describe how the model (all the Mx,y and Ox,y values in the table) are updated
in response to a sensor reading (D, B, R) taken while the agent is in patch (x′, y′):

• Set Mx′ ,y′ = D, to record the absence or presence of a transmitter in the current patch.
Furthermore, if D = 0 (i.e., no transmitter) then also set Ox′ ,y′ = 1.

• If one or more of the entries in the B-component of the sensor readings indicates
an obstacle in the respective neighbour patch (x, y), set Mx,y = 0, since there is an
obstacle in that patch and no transmitter. Also, set Ox,y = 1.

• If D = 0, i.e., if no transmitter was detected in the current patch, we will have to
update all patches (x, y) ∈ N (x′, y′) for which Mx,y /∈ {0, 1} in a Bayesian way (see
below, this part will have to account for the R component in the sensor readings) to
change their current belief value Mx,y.

• If D = 1, i.e., if we indeed have found a transmitter on the current patch, then all
values Mx,y for (x, y) ∈ N (x′, y′) are updated to be 0.5. This represents maximum
uncertainty and incentivises the agent to search in this local area, allowing for the
discovery phase described in Section 4.1.2.

In the remainder of this section we explain how we update the belief values Mx,y for
patches (x, y) ∈ N (x′, y′) for which Mx,y /∈ {0, 1} in response to the observations made by
the radio sensor.

We assume that the agent is in patch (x′, y′), and we consider a generic other patch
(x, y) ∈ N (x′, y′). Our objective is to update the probability Mx,y of finding a transmitter in
patch (x, y) based on the radio observations made by the agent in patch (x′, y′). We denote
by d the Euclidean distance between the mid-point of patch (x, y) and the mid-point of
patch (x′, y′).

As discussed in Section 3.2, the transmitter transmits beacons at a given rate τ (mea-
sured in beacons per second). For our algorithm (but not our evaluation!) we now make the
more specific assumption that the beacon transmissions have random, independent, and
identically distributed intertransmission times, following an exponential distribution with
rate τ. Hence, the beacon transmissions form a Poisson process [38] and the probability
distribution for transmitting B ∈ N0 beacons during time Ts is given by

Pr[B = b] = e−τTs
(τTs)b

b!
, b ∈ N0

The agent does not know the beacon transmission rate τ adopted by the transmitter,
but it knows a priori that the rate τ is chosen from the finite set T of allowed rates. In the
absence of other information, the agent will assume that each of these rates is equiprobable.

The transmitter uses a fixed transmit power p (in dBm). Again, the agent does not
know which transmit power the transmitter chooses, but it knows a priori that the transmit
power is chosen from the finite set P of allowed transmit powers. In the absence of other
information, the agent will assume that each of these transmit powers is equiprobable.

As discussed in Section 3.2, we are using a log-distance path loss model with path
loss exponent γ and initial path loss L. Neither of these values are known to the agent, but
the agent knows a priori that the path loss exponent γ is taken from the finite set G, and
the initial path loss is taken from the set L. In the absence of other information, the agent
assumes that each of the values in G and L are equiprobable.

We refer to one particular choice of τ ∈ T , p ∈ P , γ ∈ G and L ∈ L as a configuration
and summarily write it as a tuple a = (p, τ, γ, L). We refer to C = P × T × G × L as



Sensors 2021, 21, 7695 11 of 23

the configuration space. Furthermore, let Tx,y(a) denote the event that a transmitter of
configuration a is located in patch (x, y). Assuming the particular configuration a =
(p, τ, γ, L) ∈ C, the probability that the agent in patch (x′, y′) detects an individual beacon
sent by a transmitter in patch (x, y) is given by

Pa(d) = 1− φ(S(d|p, γ, L))

where d is the Euclidean distance between patches (x′, y′) and (x, y).
Now, let B′ be the random variable which counts how many of the B beacons trans-

mitted by a transmitter in (x, y) during time Ts are received by the agent when the configu-
ration a = (p, τ, γ, L) ∈ C is being used. Since all beacon detection attempts are assumed
to be independent of each other and all detections have the same detection probability, the
Poisson process of rate τ underlying the generation of the B beacons is modulated by a
binomial process, and the resulting process is again a Poisson process of rate

τ′ = τ′(d, a) = τ · Pa(d). Hence, the probability that the agent receives B′ = b beacons
when a transmitter of configuration a is located in patch (x, y) is given by

Pr
[

B′ = b
∣∣Tx,y(a)

]
= e−τ′ ·Ts · (τ

′ · Ts)b

b!
, b ∈ N0

We form the extended configuration space C ′ = C ∪ {∂} where ∂ denotes the event
that there is actually no transmitter in patch (x, y). We clearly have

Pr
[

B′ = b
∣∣Tx,y(∂)

]
=

{
1 , if b = 0

0 , otherwise

Now, suppose the agent observes b ∈ N0 beacons while being in patch (x′, y′). Then,
from Bayes’ law and with the law of total probability, the probability of there being a
transmitter of configuration a ∈ C ′ in patch (x, y) can be updated as:

Pr
[

Tx,y(a)
∣∣B′ = b

]
=

Pr
[

B′ = b|Tx,y(a)
]
· Pr
[
Tx,y(a)

]
Pr[B′ = b]

(1)

=
Pr
[

B′ = b|Tx,y(a)
]
· Pr
[
Tx,y(a)

]
∑a′∈C ′ Pr

[
B′ = b|Tx,y(a′)

]
· Pr
[
Tx,y(a′)

]
where Pr

[
Tx,y(a)

]
are the prior probabilities of there being a transmitter of configuration

a ∈ C ′ in patch (x, y).
To update the belief Mx,y that a transmitter is in patch (x, y) when the agent in patch

(x′, y′) hears b ∈ N0 beacons during the Ts seconds listening time, we proceed as follows:

• We assume that the current value of Mx,y represents our starting belief about there
being a transmitter in patch (x, y). We furthermore will assume that each of the
configurations a ∈ C (which notably does not include the ∂ configuration of there
being no transmitter in this patch) is equally likely. With this in mind, we initialise
our belief vector over the extended configuration space as follows:

Pr
[
Tx,y(a)

]
=

1−Mx,y , if a = ∂

Mx,y
|C| , otherwise

• With this choice of the prior probabilities over C ′, we evaluate the Bayesian update
Equation (1) for all a ∈ C ′. Denote the result for the specific configuration a ∈ C ′
by Ua.



Sensors 2021, 21, 7695 12 of 23

• Update the overall probability of finding a transmitter in patch (x, y) to become

M′x,y =

{
1−U∂ , if b = 0

min{0.5, 1−U∂} , if b > 0

When we actually do hear a beacon (i.e., b > 0), then the case of there being no
transmitter (configuration ∂) is ruled out and 1 − U∂ becomes one, which is not
meaningful in our setup, since the transmitter can also be in some other patch. Hence,
in this case we limit the updated belief value to 0.5.

To conserve memory, we only use one variable Mx,y ∈ [0, 1] to represent our knowl-
edge about patch (x, y), so we will not be able to distinguish between the (likelihoods of
the) various configurations.

4.4. Action Function
4.4.1. Generation of Candidate Paths

The purpose of generating candidate paths is that the agent can consider the result
of n actions based on its current model Mt. We express a sequence of actions to be taken
as A = {at, at+1, .., at+n}. Paths are of length n as this is the look-ahead parameter of the
algorithm. We consider A to be a set of candidate paths. The agent considers all valid
paths from its current position (x, y), where actions do not travel through known obstacles
or boundaries (as defined by the agents internal model Mt). The algorithm evaluates the
benefit of each path by calculating the expected information gain from each path using IEB.

To reduce the inherent computational complexity for large search depth values n, we
do not search all possible action sequences. Methods such as upper confidence trees (UCT)
Monte Carlo tree search exist for better than random tree search reduction, but we select a
random search to reduce the complexity of this work [39]. For a given value of n we define
a maximum number of action sequences to search, Amax, and a count of generated action
paths Acount. We then probe our action space with the following steps:

1. Initialise Abest to be some random action sequence that starts with an action at with a
visit-able patch. Acount should be zero as paths are yet to be generated.

2. For each available action at:

– Generate a random candidate path A.
– We ensure the path is valid (inside environment bounds and does not go through

the known location of an obstacle) by stepping through each action starting at at
and ensuring it is a possible legal state. Actions which cause an invalid state are
randomized until no path conflicts are detected.

– Evaluate the effectiveness of the path (see Section 4.4.2). If the expected informa-
tion gain is better than that of the current best path, set Abest = A.

3. If Acount = Amax, then end the search and select Abest, with the agents next action a0.
If Acount ≤ Amax, repeat from the previous step.

The cost of generating random paths in each loop can be greatly reduced by pre-
generating paths and testing their suitability given the current state of the agent. The
suitability constraints include generating paths that do not occupy the patches of known
obstacle positions and do not exceed the boundary of the environment. Once we deplete
the pregenerated paths we use the slower random path generation. Dependant on the
n-step value and number of random paths, it is likely that most paths will be unique. In
the case where they are not unique, this does not affect the candidate path selection.

4.4.2. Calculating IEB of a Single Candidate Path

Suppose our agent is on patch (x, y) and we are processing the effectiveness of a single
action sequence A = {at, at+1, ..., at+n}. Firstly we operate on a clone of our current model
Mt which we represent as M′t. A high level view of the algorithm is as follows:



Sensors 2021, 21, 7695 13 of 23

1. We use a quantity related to the total uncertainty in Mt to provide a comparison.
The quantity introduced below is a variant of the well-known information-theoretic
notion of entropy [40], modified to account for working with a belief vector instead of
a probability distribution.

2. Apply the action sequence A on the cloned model M′t, producing M′t+n, where each
location the agent visits it is assumed that maximum information gain is achieved
(each visited location in M′t+n set to zero). This model represents the expected result
of having performed the actions.

3. Evaluate the entropy of M′t+n.
4. Calculate the expected information gain I based on the action sequence A.

As an agent, we simply want to maximize our expected information gain, which is the
path A with the largest information gain I. Once this is chosen, the agent simply performs
the first action in the sequence, at. The process in more detail is as follows:

1. Calculate the entropy of our current internal model (The entropy calculation H() is
not strictly entropy as we operate on a belief vector and not probabilities. We adopt
the same notation as the calculation and purpose is otherwise same. In the remainder
of the paper, we will simply refer to entropy and model entropy):

H(M) = − ∑
(x,y)∈M

Mx,y log Mx,y

where we assume x log x = 0.
2. As the agent visits a given location, it can be assumed that all information was

observed in that patch. Therefore, we zero the positions the agent visits using the
action sequence A (by setting their Mx,y values to zero—this amounts to assuming
that we do not find a transmitter in these patches) and store the result in M′.

3. Calculate the entropy of the predicted internal model:

H(M′) = H(M|A) = − ∑
(x,y)∈M

M′x,y log M′x,y

4. The expected information gain is the difference in entropy between the calculated
current information and expected information:

I(M; M′) = H(M)− H(M|A)

4.4.3. Evaluating IEB for Action Sequences

The question our agent wants to answer at each time step is “which action should I
take next?”. We answer this by comparing the action sequences from the previous step.
We denote E as the IEB value and calculate each action as the following (which shares
similarities with n-step empowerment [28]):

E = C(p(Mt+n|an
t )) = max

p(an
t )

I(An
t ; Mt+n)

Essentially, we pick the path that yields the greatest expected information gain and
choose to perform the first action of the sequence at.

4.4.4. Horizon Problem

There exists a corner case when the algorithm is evaluating candidate paths, where
there are no paths within the current n-step horizon that give any significant information—
for example because the agent is located in an area that has already been searched exhaus-
tively. This presents itself as the maximum channel capacity for the best action at being
equal to one or more other actions. The predicted information gain for a given action may
be zero, indicating that there is no expected information gain in the local vicinity, or equal



Sensors 2021, 21, 7695 14 of 23

value, where there is no preferred information. In this case, it is not clear which action is to
be selected next as there is no clear preference.

We refer to this condition as the agent being entropy-deprived. In this case the agent
needs to travel a longer distance into areas where there is still potential information gain. A
trivial approach would be to switch the agent into a pure random walk mode until it finds
itself in a more information-rich area, but we expected this to be suboptimal and opted for
another approach.

Our approach solves two problems: identifying an “interesting” target area, and
moving the agent there. For the latter problem we use a standard algorithm from robotics,
the wave-front path planner described in [41] and do not comment on it any further here
due to space reasons. Instead of simply identifying the patch (x, y) with the highest entropy
(uncertainty) value H(Mx,y) and go there, we prefer to visit larger unexplored areas with
substantial total entropy. We aim to achieve this with the following approach:

• Our model M stores belief values. For each such belief value Mx,y we determine
its entropy value H(Mx,y) and use these entropy values as input for calculating a
standard data structure in computer vision, the so-called summed area table [42]. We
do not discuss the details of this data structure here due to lack of space, but its main
use for our paper is to calculate for an arbitrary given rectangular area the sum of the
entropies of all patches contained within that area.

• We use the ability to query the summed entropy of rectangular areas in the following
iterative algorithm (quad-tree search): We start by subdividing the overall rectangular
environment into four (first-order) quadrants. For each first-order quadrant we query
the summed-area table to identify the first-order quadrant with the largest summed
entropy. The resulting first-order quadrant is then again sub-divide into four (second-
order) quadrants. We again identify the second-order quadrant with the largest
summed entropy, subdivided this further, and so on. We stop our algorithm when the
quadrant size is reduced to a single patch and return the quadrant coordinates with
the largest entropy.

Once a target patch was identified, we use the wave-front planner algorithm to
determine the next steps going there. This algorithm is capable of planning paths around
known obstacles. We do not insist for the agent to actually reach the target patch, but we
switch back to normal IEB behaviour once the agent enters an area where the condition of
the agent being entropy-deprived ceases to apply.

4.5. Computational Complexity

The complexity of the algorithm largely depends on the scenario in which it is operat-
ing in and the algorithm’s mode of operation. We will therefore consider several scenarios
and approximate an upper bound of complexity.

• IEB normal operation—in this case, we are applying our standard algorithm (in both
the search and discovery phases). The process is as follows:

– Model update—we update the agent’s internal belief values. Whether or not a
signal is heard, we must update all internal values within Rmax to reflect this, so
the update cost is O(R2

max).
– Calculate next action—calculate for a fixed number of n-step paths the potential

entropy gain. This computation is made more complicated when a candidate
path turns out not to be feasible (note that each path will be feasibility-checked,
which is O(n)). For k paths, we compute O(k ∗ n) actions. In this case, we use
a randomised backtracking method to find a feasible path, and as a result of
backtracking we may have to inspect approximately 4n patches to form a path in
the worst case.

• Deprived entropy case—in this case, our n-step lookahead algorithm is unable to deter-
mine near-future information gains, and no immediate action is favourable. This can
occur for example if all local patches are explored and the agent can say with certainty



Sensors 2021, 21, 7695 15 of 23

that there is no local information to be gathered. In this case, we perform our horizon
search algorithm. The process is as follows:

– Quad-tree calculation—we have to calculate this summed-area table and to perform
the “quadtree search”. This is O(n2), as the entire agent’s belief vector needs to
be considered. Once this is calculated, the result can be cached and reused.

– Find peak entropy area—here, we calculate the location of a single patch, which is
located within the largest area of entropy. Because of the previous calculation,
this search is O(

√
n).

Due to the nature of the search modes, which are also affected by the environment, we
do not specify an overall algorithm complexity. For example, deprived entropy case, a rare but
possible scenario, will clearly require much more computation to derive a next-action at.

5. Baseline Algorithms

To test the effectiveness of the algorithm, we compare against two different agents:

• Random walk—at each time step the agent is given a set of possible actions A, where
it randomly selects an action with a uniform distribution to be taken from a set of
possible actions. This agent also works in obstructed environments. We consider an
upper bound for the time taken for the random walk to cover all patches is equivalent
to the so-called covering time, which for a two-dimensional n× n torus is asymptotically
∼ O(n2(log n)2) [43] (The covering time is a more appropriate measure for searching
the entirety of a torus-shaped environment. The complexity described should be
treated with care and used only to give some approximate order of magnitude). This
is of course a simplification of our problem space, as the action space A can be reduced
by invalid actions generated by the sides of the designated environment or obstacles.

• Lawn mower—the agent performs a “lawn mower”-like action, where it plans a
path that goes through each patch in the open field, without considering the radio
information. This agent is unable to navigate around obstacles and is therefore
restricted to the open field scenario. The upper bound for an open field is therefore
O(n2).

For each agent, a suitable number of maximum iterations were set that none of the
agents reached this number of ticks.

6. Simulation Setup

The simulation environment was designed to avoid situations where transmitters are
impossible to reach by borrowing from maze design, particularly by using a randomized
depth-first search recursive-stack backtracker [44]. A maze is created such that obstacles
occupy an entire patch, which is followed by randomly removing obstacles from patches
until the desired ratio of obstacles in the environment is obtained. This is not an efficient
environment setup, but is simple and only needs to be run once per simulation. The
maximum possible ratio of obstacles to nonobstacles is ≈ 1

2 in a full environment. Greater
numbers of obstacles resembles the internals of a building, whereas a lower number of
obstacles is more representative of an open landscape.

The agent is spawned in the upper-left of the environment in patch (0, 0), which
is guaranteed to be available as the obstacle placement algorithm starts there also. The
transmitters are then randomly placed in the environment in places where there is not an
obstacle or another transmitter, until the desired number of transmitters is reached. The
transmitter properties are assigned randomly with equal probability for any configuration.
Each transmitter in the environment is unique in placement position, but is not guaranteed
to be unique in transmitter properties.

In addition to the values discussed in Table 1, we define several constants. The
environment size is Lw = 500 and Lh = 500, for a total of 250,000 patches. We set the
total noise power to N0 = −120dBm and have the agent assume the worst Rmax from the
configuration space. The configuration space C is varied for each experiment.



Sensors 2021, 21, 7695 16 of 23

Table 1. A list of fixed parameters used in experiments.

Symbol Value Description

v 0.5 m/s The agent velocity

Ts 4 s The time taken to move from one patch to another

l 2 m The length of a given patch

n 10 The lookahead value of the IEB algorithm

paths 5000 The number of sampled paths for each iteration

max ticks 500,000 Maximum number of ticks for the IEB simulation (derived
experimentally)

Lw 500 Environment width

Lh 500 Environment height

total patches 250,000 Total number of patches in the environment

The algorithm’s n-step is 10, with the number of randomly generated paths set to 5000.
Simulations are allowed to run for a maximum of 500,000 ticks (none have come close to
reaching this). The patch side length is set to l = 2 m. We run 1000 replications per data
point and we report the averages, with standard deviation indicated.

In each experiment the transmitters are randomly placed and the agent is unaware of
the transmitter properties. If applicable, the obstacles are also randomly placed such that

7. Results

We conduct three different types of experiments, the Baseline (Section 7.1), Varying
Transmitters (Section 7.2), Varying Obstacles (Section 7.3). The Baseline experiments allow us
to compare the two baseline algorithms described in Section 5 with the IEB agent. As both
baseline algorithms are unable to be tested in every experiment, we utilize this scenario
to give a fair comparison. In the Varying Transmitters scenario, we observe the IEB agent’s
response to unknown varying transmitter configurations. This allows us to inspect how
each transmitter configuration affects the agent’s ability to locate all transmitters in the
environment. For the Varying Obstacles scenario we compare the IEB agent to the random
agent in order the gauge the agent’s ability to locate transmitters within the environment
with the addition of increasing numbers of obstacles. For each result we calculate the
standard deviation.

7.1. Baseline

The focus of the first experiment is to consider an “ideal” scenario, where we consider
a simple configuration space, no obstacles and compare to our baseline algorithm, the
lawnmower behaviour. Here, we consider only one type of transmitter whose properties
are fixed, but unknown to the agent.

In the first experiment shown in Figure 1, we have the following environment vari-
ables: transmitters = 1, 2, 3, 4, obstacles = 0. The agent’s n-step is 10. The configuration
space, C, is initialised as follows: L = {50 dB}, G = {2}, P = {100 mW}, T = {10 Hz}.

In Figure 1 we see that the IEB agent is able to find the transmitters in the environment
approximately one order of magnitude faster than the lawnmower agent, and approxi-
mately two orders of magnitude times faster than the random agent. For both algorithms
the average search time increases with the number of transmitters as a larger amount of
the environment is required to be explored on average to locate all transmitters.



Sensors 2021, 21, 7695 17 of 23

1 2 3 4
Number of transmitters

104

105

106
Av

er
ag

e t
ick

s (
t)

Number of Transmitters Vs Average Ticks Taken

IEB
Lawnmower
Random

Figure 1. Time taken to find all transmitters within environment. Error bar indicates σ2 standard deviation.

7.2. Varying Transmitters

Next, we consider expanding the configuration space for the second experiment in
an open-field (no obstacles), to test the agent’s ability to detect transmitters when no prior
transmitter configuration is assumed. We then compare the agent’s ability to detect and
locate transmitters of a given type. This gives us some indication as to the “radio advantage”
offered to the IEB agent over the lawnmower agent, given the ability to detect beacons.
We also observe the difference that each particular transmitter property has on the agent’s
ability to locate transmitters effectively.

In the second experiment as shown in Figure 2, we have the following environ-
ment variables: transmitters = 1, 2, 3, 4, obstacles = 0%. The agent’s n-step is 10. We
collect results for the following combinations of parameters: C is L = {50 dB}, G = {2, 4},
P = {10 mW, 100 mW}, T = {1 Hz, 0.1 Hz}. These values were selected by experimenta-
tion and offer a somewhat realistic set of transmitter properties, allowing us to assess the
relative impact of each parameter.

The configurations are as follows (where over-bars represent averages over the
given set):

• Average, where L = 50 dB, G = {2, 4}, P = {10 mW, 100 mW}, T = {1 Hz, 0.1 Hz}.
• γ = 2, where L = 50 dB, G = 2, P = {10 mW, 100 mW}, T = {1 Hz, 0.1 Hz}.
• γ = 4, where L = 50 dB, G = 4, P = {10 mW, 100 mW}, T = {1 Hz, 0.1 Hz}.
• p = 0.1, where L = 50 dB, G = {2, 4}, P = 100 mW, T = {1 Hz, 0.1 Hz}.
• p = 0.01, where L = 50 dB, G = {2, 4}, P = 10 mW, T = {1 Hz, 0.1 Hz}.
• τ = 1.0, where L = 50 dB, G = {2, 4}, P = {10 mW, 100 mW}, T = 1 Hz.
• τ = 0.1, where L = 50 dB, G = {2, 4}, P = {10 mW, 100 mW}, T = 0.1 Hz.



Sensors 2021, 21, 7695 18 of 23

1 2 3 4
Number of transmitters

105

Av
er

ag
e t

ick
s (

t)

Number of Transmitters Vs Average Ticks Taken

Lawnmower
IEB: Average
IEB: =2
IEB: =4
IEB: p=0.1
IEB: p=0.01
IEB: =1.0
IEB: =0.1

Figure 2. Time taken to find all transmitters within environment with varied transmitter properties.
Error bar indicates σ2 standard deviation.

Figure 2 shows that the IEB agent is slower to find all transmitters in the environment
when the configuration is less favourable (beacon is received less reliably), where the “radio
advantage” (the advantage the IEB agent has from detecting transmitters) is decreased
when the number of transmitters is increased. In the least favourable case scenario, the IEB
algorithm performs approximately as well as the lawnmower agent. The most influential
parameter for search times is the path loss parameter γ ∈ G, affirming that the agents
ability to detect a transmitter is important to decreasing the time to locate each transmitter
in the environment.

7.3. Varying Obstacles

For our third experiment, we look to observe the effect of obstacles on the agent’s
search behaviour. In this scenario we consider only one transmitter is to be found, and
instead add obstacles to the environment. In this scenario, we are unable to compare the
agent against the lawnmower agent, as it is unable to navigate around obstacles.

For the experiment shown in Figure 3, the environment is initialised such that trans-
mitters = 1, obstacles = 5%, 10%, 15%, 20%, 25%. The agent again has an n-step = 10. C is
defined as: L = {50 dB}, G = {2}, P = {100 mW}, T = {10 Hz}. The agent again assumes
the least favourable configuration of transmitter properties from the configuration space.

Figure 3 shows that increasing the number of obstacles in the environment increases
the time taken to find transmitters, as the agent needs to also navigate around obstacles and
the obstacles ’block’ the transmitter signal, significantly decreasing the agent’s ability to
detect a transmitter and adjust its search strategy based on this information. As also shown
in Figure 2, the agent’s search time is increased if the transmitter(s) can not be reliably
detected, which is exacerbated in the case of greater densities of obstacles. The agent will
therefore spend time revisiting previously visited patches to reach what it perceives to be
likely location of a transmitter. Despite this, the agent is still able to search the environment
at least as well as the lawnmower agent in an empty-field environment shown in Figure 1.



Sensors 2021, 21, 7695 19 of 23

5 10 15 20 25
Percentage of obstacles (%)

105

106

Av
er

ag
e t

ick
s (

t)

Percentage of Obstacles Vs Average Ticks Taken

IEB
Random

Figure 3. Time taken to find a single transmitter within an environment with an increasing number of
randomly placed obstacles, where average time is shown. Error bar indicates σ2 standard deviation.

The next observation of interest is that the agent is able to find transmitters faster as
the obstacle density rises from 20% to 25%. As signals are then unlikely to be detected until
the agent is within close proximity to the transmitters, the agent is much more likely to
be within the vicinity of the transmitter when it begins the discovery phase. The agent
still gains the benefit of being able to pass through areas quickly and discern whether a
transmitter is likely to be in the local area or not.

On the other hand, the random agent is not affected significantly by the number of
obstacles. Any advantage from reduced path options is lost to getting “stuck” in maze-
like structures.

8. Discussion

Our results show that our algorithm performs significantly faster than the lawnmower
(“dense” path) behaviour in simple environments, that the algorithm relies on hearing
signals to significantly speed-up search, and that obstacles do not significantly reduce
agent search times. This speed increase can be attributed both in part to the algorithm
itself outperforming the lawnmower search agent, and the “radio advantage” given by the
ability to detect transmitted signals.

In Figures 1 and 2 we show that despite varying transmitter properties, by making the
assumption of a least favourable transmitter configuration the agent is able to outperform
the random agent in every scenario tested and match or outperform the lawnmower
search agent with a predefined search path. The advantage of IEB diminishes as the
algorithm is not able to uniquely identify transmitters and the advantage of detecting
targets is lost. In this case, we show that the algorithm is still able to outperform the
lawnmower agent in every tested case. We note that when observing the IEB agent’s
behaviour in a zero-transmitter case, it performs a behaviour similar to the lawnmower
agent, but tends to prefer to spiral inwards instead. With greater densities of transmitters
and with unfavourable transmitter signal configuration, we expect to see greater losses



Sensors 2021, 21, 7695 20 of 23

in performance of the IEB agent, perhaps even underperforming when compared to the
lawnmower agent.

This property is useful in the context of SAR as it may not be known in advance
what types of devices a victim may have or how many may be in the vicinity of one
another. In reality, we should be able to give the agent a more reasonable expectation of
expected transmitter properties based on local laws regarding transmit powers and the
properties of expected transmitters a person is likely to carry, such as that of cellular, WiFi,
or Bluetooth transmitters.

One of the advantages of the IEB algorithm is that it is able to navigate through various
unknown densities of obstacles, something that is not greatly focused on in previous works.
In Figure 3 we show that increasing the environment complexity by introducing obstacles
does not dramatically increase search time, despite the obstacles occluding the transmitter
signal. Increasing the environment complexity significantly even decreases time to search,
as signals are more likely to be heard closer to the transmitter and when they are heard
the agent is likely much closer to the transmitter origin, which in turn biases the agent’s
search paths.

In the context of SAR, we must consider the environment has unknown complexity.
For example, during an earthquake it is reasonable to expect the environment to dramat-
ically change even if it was previously modelled [45]. The simple no-obstacle scenario
where line of sight is possible is unlikely to be a scenario where a SAR team requires help
searching. Instead, the deployment of such an agent would likely be over a vast space,
where structures may have collapsed or the terrain varies greatly. Our results suggest that
increasing complexity of the environment does not dramatically increase the agents search
time, even helping it to search more efficiently in some extreme cases.

A disadvantage of the IEB algorithm is that although the average MTS is decreased
when compared to another algorithm such as a lawnmower agent, we recognise that there
are edge cases where the IEB agent may take longer to locate search victims in individual
scenarios. As mentioned previously, we consider this risk somewhat mitigated by having a
simpler agent search a “dense" path, which is also required in any case for locating search
victims that do not carry some form of detectable wireless transmitter.

When compared to the work of Lanillos et al. [30], we showed that our IEB algorithm is
able to choose paths that quickly discount large areas where a transmitter should not exist.
We also showed that our algorithm is able to navigate and search complex environments
and handle multiple transmitters of unknown properties.

9. Conclusions

In this paper, we propose an algorithm for searching large spaces with few a priori
information. The agent searches for one or more objectives with minimal assumptions
about the nature of the goal. The agent is able to simultaneously explore and search the
environment, with the goal of maximising information revealed about the location of
transmitters in the near future.

In future works, we would like to further explore the single agent case in the SAR
context. One idea we are seek to explore is to allow the ability to uniquely detect transmit-
ters, eliminating the need for the discovery phase in the IEB search algorithm and reducing
the overall complexity. Equally, angle of attack (AoA) with some associated probability of
angle would allow for more focused belief values. If we are able to decode a commonly
used signal, it is likely we would be able to find a transmitted unique identifier. This would
allow us to efficiently track multiple transmitters in an arbitrarily large environment.

Another research area of interesting is to look to propose better paths, without pruning
potentially good paths from the agent’s search. One such method would be to explore
UCT-tree search [39]. So far, we assumed the problem is 2D, but we would like to expand
our work into 3D space to allow the searching of more complex environments, such as the
internals of a building or to be able to make the decision to search the outside of a structure



Sensors 2021, 21, 7695 21 of 23

from different perspectives. To increase the search space to a 3D model, an improved
pruning algorithm would be required to keep computation reasonable.

One key assumption was also that the potential victims involved do not move in the
environment, which is not necessarily the case. In this case we would need decay our
confidence that a transmitter is in a given location and increase the confidence that it may
be located in surrounding patches [46].

Additionally, the IEB agent makes no use of signal strength information as other
algorithms do. Although this information is known not to be reliable, it may still proba-
bilistically speed up search if a transmitter can be said to be a distance away with some
confidence. The ability to derive an approximate angle of the received signal would also
greatly reduce the search space significantly.

In future experiments, the authors intend to decouple the “radio advantage" from the
IEB agent’s fundamental search time without the ability to observe transmitters. We would
also like to investigate overall cover time to visit every patch, an important measurement
in the SAR problem space.

Author Contributions: Conceptualization, D.B., A.W. and G.W.; methodology, D.B., A.W. and G.W.;
software, D.B.; validation, D.B., A.W. and G.W.; formal analysis, D.B.; investigation, D.B.; resources,
A.W. and G.W.; data curation, D.B.; writing—original draft preparation, D.B., A.W. and G.W.;
writing—review and editing, D.B., A.W. and G.W.; visualization, D.B., A.W. and G.W.; supervision,
A.W. and G.W.; project administration, D.B., A.W. and G.W.; funding acquisition, A.W. and G.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eun, J.; Song, B.D.; Lee, S.; Lim, D.E. Mathematical investigation on the sustainability of UAV logistics. Sustainability 2019,

11, 5932. [CrossRef]
2. Mayer, S.; Lischke, L.; Woźniak, P.W. Drones for Search and Rescue. In Proceedings of the 1st International Workshop on

Human-Drone Interaction, Glasgow, UK, 4–9 May 2019; Ecole Nationale de l’Aviation Civile [ENAC]: Toulouse, France 2019.
3. Doherty, P.; Rudol, P. A UAV search and rescue scenario with human body detection and geolocalization. In Australasian Joint

Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–13.
4. Silvagni, M.; Tonoli, A.; Zenerino, E.; Chiaberge, M. Multipurpose UAV for search and rescue operations in mountain avalanche

events. Geomat. Nat. Hazards Risk 2017, 8, 18–33. [CrossRef]
5. Erdos, D.; Erdos, A.; Watkins, S.E. An Experimental UAV System for Search and Rescue Challenge. IEEE Aerosp. Electron. Syst.

Mag. 2013, 28, 32–37. [CrossRef]
6. Merwaday, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the

Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015.
7. Sa, I.; Hrabar, S.; Corke, P. Inspection of Pole-Like Structures Using a Vision-Controlled VTOL UAV and Shared Autonomy.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA,
14–18 September 2014.

8. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349.
[CrossRef]

9. Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of Spectral-Temporal Response Surfaces by Combining
Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 3140–3146. [CrossRef]

10. Ghamry, K.A.; Kamel, M.A.; Zhang, Y. Cooperative Forest Monitoring and Fire Detection Using a Team of UAVs–UGVs. In
Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016.

11. Cooper, J.; Goodrich, M.A. Towards combining UAV and sensor operator roles in UAV-enabled visual search. In Proceedings
of the 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), Amsterdam, The Netherlands, 12–15
March 2008; pp. 351–358. [CrossRef]

12. Li, B.; Jiang, Y.; Sun, J.; Cai, L.; Wen, C.Y. Development and Testing of a Two-UAV Communication Relay System. Sensors 2016,
16, 1696. [CrossRef] [PubMed]

13. der Bergh, B.V.; Chiumento, A.; Pollin, S. LTE in the Sky: Trading Off Propagation Benefits with Interference Costs for Aerial
Nodes. IEEE Commun. Mag. 2016, 54, 44–50. [CrossRef]

http://doi.org/10.3390/su11215932
http://dx.doi.org/10.1080/19475705.2016.1238852
http://dx.doi.org/10.1109/MAES.2013.6516147
http://dx.doi.org/10.3390/info10110349
http://dx.doi.org/10.1109/JSTARS.2015.2406339
http://dx.doi.org/10.1145/1349822.1349868
http://dx.doi.org/10.3390/s16101696
http://www.ncbi.nlm.nih.gov/pubmed/27754369
http://dx.doi.org/10.1109/MCOM.2016.7470934


Sensors 2021, 21, 7695 22 of 23

14. Baker, C.A.B.; Ramchurn, S.; Teacy, W.L.; Jennings, N.R. Planning Search and Rescue Missions for UAV Teams. In Proceedings
of the Twenty-Second European Conference on Artificial Intelligence (ECAI’16), The Hague, The Netherlands, 29 August–2
September 2016; IOS Press: The Hague, The Netherlands 2016; pp. 1777–1778. [CrossRef]

15. Viseras, A.; Wiedemann, T.; Manss, C.; Magel, L.; Mueller, J.; Shutin, D.; Merino, L. Decentralized multi-agent exploration with
online-learning of gaussian processes. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation
(ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4222–4229.

16. AbdulCareem, M.A.; Gomez, J.; Saha, D.; Dutta, A. RFEye in the Sky. IEEE Trans. Mob. Comput. 2020, [CrossRef]
17. Shahidian, S.A.A.; Soltanizadeh, H. Optimal trajectories for two UAVs in localization of multiple RF sources. Trans. Inst. Meas.

Control 2016, 38, 908–916. [CrossRef]
18. Ramirez-Paredes, J.P.; Doucette, E.A.; Curtis, J.W.; Gans, N.R. Urban target search and tracking using a UAV and unattended

ground sensors. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 2401–2407.
19. Newaz, A.A.R.; Jeong, S.; Lee, H.; Ryu, H.; Chong, N.Y.; Mason, M.T. Fast radiation mapping and multiple source localization

using topographic contour map and incremental density estimation. In Proceedings of the 2016 IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1515–1521.

20. Ho, Y.H.; Chen, Y.R.; Chen, L.J. Krypto: Assisting Search and Rescue Operations Using Wi-Fi Signal with UAV; In Proceedings of the
DroNet ’15, Florence, Italy, 18 May 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 3–8. [CrossRef]

21. Artemenko, O.; Dominic, O.J.; Andryeyev, O.; Mitschele-Thiel, A. Energy-aware trajectory planning for the localization of
mobile devices using an unmanned aerial vehicle. In Proceedings of the 2016 25th International Conference on Computer
Communication and Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–9.

22. Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A. LSAR: Multi-UAV Collaboration for Search and Rescue Missions. IEEE Access 2019,
7, 55817–55832. [CrossRef]

23. Perez-Carabaza, S.; Bermudez-Ortega, J.; Besada-Portas, E.; Lopez-Orozco, J.A.; de la Cruz, J.M. A multi-uav minimum time
search planner based on aco r. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19
July 2017; pp. 35–42.

24. Perez-Carabaza, S.; Besada-Portas, E.; Lopez-Orozco, J.A.; de la Cruz, J.M. A real world multi-UAV evolutionary planner for
minimum time target detection. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO,
USA, 20–24 July 2016; pp. 981–988.

25. San Juan, V.; Santos, M.; Andújar, J.M. Intelligent UAV map generation and discrete path planning for search and rescue
operations. Complexity 2018, 2018, 6879419.

26. Capitan, J.; Merino, L.; Ollero, A. Decentralized cooperation of multiple uas for multi-target surveillance under uncertainties. In
Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014;
pp. 1196–1202.

27. Waharte, S.; Trigoni, N. Supporting Search and Rescue Operations with UAVs. In Proceedings of the 2010 International
Conference on Emerging Security Technologies, Canterbury, UK, 6–7 September 2010; pp. 142–147. [CrossRef]

28. Klyubin, A.; Polani, D.; Nehaniv, C. Empowerment: A Universal Agent-Centric Measure of Control. In Proceedings of the 2005
IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 1, pp. 128–135.

29. Salge, C.; Glackin, C.; Polani, D. Changing the Environment Based on Empowerment as Intrinsic Motivation. Entropy 2014,
16, 2789–2819. [CrossRef]

30. Lanillos, P.; Besada-Portas, E.; Pajares, G.; Ruz, J.J. Minimum time search for lost targets using cross entropy optimization. In
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October
2012; pp. 602–609.

31. Barry, D.; Willig, A.; Woodward, G. Empowerment-Driven Single Agent Exploration for Locating Multiple Wireless Transmitters.
In Proceedings of the AI 2018: Advances in Artificial Intelligence, Wellington, New Zealand, 11–14 December 2018; Springer:
Wellington, New Zealand, 2018; Volume 11320, pp. 29–37.

32. Rappaport, T.S. Wireless Communications—Principles and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 2002.
33. Hou, Z.; Xiong, S. On Model-Free Adaptive Control and Its Stability Analysis. IEEE Trans. Autom. Control 2019, 64, 4555–4569.

[CrossRef]
34. Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems.

Eur. J. Control 2021, 58, 373–387. doi: 10.1016/j.ejcon.2020.08.001. [CrossRef]
35. Ménard, A.; Marceau, D.J. Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata. Environ. Plan. Plan. Des.

2005, 32, 693–714. [CrossRef]
36. Ay, N.; Bertschinger, N.; Der, R.; Güttler, F.; Olbrich, E. Predictive information and explorative behavior of autonomous robots.

Eur. Phys. J. B 2008, 63, 329–339. [CrossRef]
37. Scheunemann, M.M. Autonomous and Intrinsically Motivated Robots for Sustained Human-Robot Interaction. Ph.D. Thesis,

Computer Science, University of Hertfordshire, Hertfordshire, UK, 2021.
38. Karlin, S.; Taylor, H.M. A First Course in Stochastic Processes, 2nd ed.; Academic Press: San Diego, CA, USA, 1975.
39. Salge, C.; Guckelsberger, C.; Canaan, R.; Mahlmann, T. Accelerating Empowerment Computation with UCT Tree Search. In

Proceedings of the Conference on Computational Intelligence and Games, Maastricht, The Netherlands, 14–17 August 2018;
pp. 165–172.

http://dx.doi.org/10.3233/978-1-61499-672-9-1777
http://dx.doi.org/10.1109/TMC.2020.3038886
http://dx.doi.org/10.1177/0142331214566026
http://dx.doi.org/10.1145/2750675.2750684
http://dx.doi.org/10.1109/ACCESS.2019.2912306
http://dx.doi.org/10.1109/EST.2010.31
http://dx.doi.org/10.3390/e16052789
http://dx.doi.org/10.1109/TAC.2019.2894586
doi: doi: 10.1016/j.ejcon.2020.08.001
http://dx.doi.org/10.1016/j.ejcon.2020.08.001
http://dx.doi.org/10.1068/b31163
http://dx.doi.org/10.1140/epjb/e2008-00175-0


Sensors 2021, 21, 7695 23 of 23

40. Shannon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. 623–656. [CrossRef]
41. Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.; Thrun, S. Principles of Robot Motion—Theory, Algorithms

and Implementation; MIT Press: Cambridge, MA, USA, 2005.
42. Crow, F. Summed-area tables for texture mapping. In Proceedings of the ACM SIGGRAPH 84, Minneapolis, MN, USA, 23–27

July 1984.
43. Levin, D.A.; Peres, Y.; Wilmer, E.L. Markov Chains and Mixing Times; Americal Mathematical Society: Providence, RI, USA, 2009.
44. Kozlova, A.; Brown, J.A.; Reading, E. Examination of representational expression in maze generation algorithms. In Proceedings

of the 2015 IEEE Conference on Computational Intelligence and Games (CIG), Tainan, Taiwan, 31 August–2 September 2015;
pp. 532–533. [CrossRef]

45. Qi, J.; Song, D.; Shang, H.; Wang, N.; Hua, C.; Wu, C.; Qi, X.; Han, J. Search and Rescue Rotary-Wing UAV and Its Application to
the Lushan Ms 7.0 Earthquake. J. Field Robot. 2016, 33, 290–321. doi: 10.1002/rob.21615. [CrossRef]

46. Stone, L.; Keller, C.; Kratzke, T.; Strumpfer, J. Search for the Wreckage of Air France Flight AF 447. Stat. Sci. 2014, 29, 69–80.
[CrossRef]

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/CIG.2015.7317902
doi: doi: 10.1002/rob.21615
http://dx.doi.org/10.1002/rob.21615
http://dx.doi.org/10.1214/13-STS420

	Introduction
	Related Work
	System Model
	Search Area
	Transmitters and Wireless Propagation
	Search Agent
	Performance Measure

	Algorithm
	Overall Structure
	Search Phase
	Discovery Phase

	Model Structure
	Model Update Function
	Action Function
	Generation of Candidate Paths
	Calculating IEB of a Single Candidate Path
	Evaluating IEB for Action Sequences
	Horizon Problem

	Computational Complexity

	Baseline Algorithms
	Simulation Setup
	Results
	Baseline
	Varying Transmitters
	Varying Obstacles

	Discussion
	Conclusions
	References

