
PAL University of Hertfordshire

Consolidation 7 – Week 9 – December 2015 –

Aim & Objectives
• Review last session

• More exercises of Test Driven Development

• How to test

Introduction
In this session we’ll be looking at more examples of testing
and defending our code against bad operation.

Exercise - Testing Bad Code
Open the resource ‘Resources/ Week9/ worstcode ’ on the
website where you should see a program that is particu-
larly susceptible to being broken by the user. We’ll start
by analysing potential flaws in general and use this to work
out how to generate good test cases.

Getting user input
When getting user input the first thing that needs to come
to your mind is “what if the user doesn’t enter what I want
them to enter?”. If you want a number a user will give
you a letter. If you want a word they’ll give you an empty
string. If you want a number in a range they’ll give you
a number outside that range. If you want a positive value
they’ll give you a negative.

The point is, the user will always keep you on your toes.
The weakest part of a computer is the bit that connects the
screen to the keyboard. To get around these issues, before
we do something that may cause our program to crash, we
should check it’s at least got a fighting chance!

Numbers
There isn’t a particularly good method for checking how
valid a number is in Python. Checking how valid each char-
acter is introduces it’s own overhead [1]. It’s far better in
this case to catch the case where a cast from a string to a
number fails, for example:
isNumber()

#

Check string is valid number.

#

@param s The string to be checked.

@return True iff valid number.

def isNumber(s) :

try :

float(s)

return True

except ValueError :

return False

The code shown above is exactly how it looks, the ‘try’ is
the program literally “trying” to run the code you’ve asked
it. If an error occurs, it stops running in the ‘try’ block
and it makes an effort to “catch” the error it’s looking
for with ‘except’. It then runs some other code instead
defined inside the ‘except’ block. This structure resembles
‘if’ and ‘else’ relationship.

The line in that code that will cause the program to
“throw” an “exception” is the ‘float(s)’ line, where
a string like ‘"hello"’ cannot be made into a number.
“throw” is how we talk about the computer finding there
was an error during execution and “exception” is the way

we refer to that error that was given out by the computer.
We say that these cases are exceptional.

Tip: Keep the code inside a try-catch scenario as minimal
as possible as it usually adds significant overhead to the
speed of your program. Usually you only want to use them
for inputs you don’t control, otherwise you simply need to
design your algorithms better if they throw exceptions.

[1] ‘http: // stackoverflow. com/ questions/ 354038/
how-do-i-check-if-a-string-is-a-number-float-

in-python ’

Other Values
For other values you’ll have to be more creative. You
could look at characters by inspecting them individually,
the length of the string, whether the string refers to some-
thing that already exists - the list is endless. It all depends
on what valid data you expect from the user which always
depends on what you want to do with it, numbers are just
the most common case.

Checking your Math
The next place where you are likely to get issue is in the
mathematics in your program. There are literally infinite
ways most programs can go wrong and it’s your job to go
from this large number to just one issue you can solve. Be-
low are some ways programs can go wrong.

Divide by Zero
This one is infamous. You need to make sure that there is
no way your program will allow the computer to divide by
zero as this will cause a crash. Most people have punched
‘1 / 0’ into an old Casio calculator and got the predictable
“Error!” on the display. The reason this happens is because
mathematicians cannot decide what the answer is to the
problem, therefore the output is undefined. Rather than
output something incorrectly, computer scientists chose not
to output anything at all and to throw an exception in the
case it occurs. Make sure you watch out for this in your
programs and test for it where possible!

General Algorithms Issues
One of the other aspects that usually goes wrong is the
algorithm simply doesn’t work. The computer not crash-
ing, the program compiling and the code programmed as
planned are not measures of how well it actually works to
solve the task. Your method to solve a problem just may
not work and it’s a general sense you need to learn that
you may just be trying hard at the wrong solution. Some
general advice to prevent this:

• Plan your algorithm on paper before hand and make
sure you understand how it works.

• Write tests for your algorithm as specific key stages to
make sure sections work how you think they should.

• As a friend what they think of what you have planned
or written and try to get some constructive feedback.
Sometimes it takes many minds to tackle a problem!

Resources & Further Reading
‘http: // homepages. herts. ac. uk/ ~ db12aba/ ’ – All
content from these sessions updated weekly.

‘http: // code. org/ ’ – A good resource testing your pro-
gramming skills.

1

‘http: // stackoverflow. com/ ’ – Highly recommended
online help for programmers (NOTE: Employers are in-
terested to know whether you’re an active member of this
site!).

‘http: // draw. io ’ – A very good, free online drawing tool
that exports to many formats, including ‘XML’ and ‘JPG’.

2

