
PAL University of Hertfordshire

Consolidation 4 – Week 6 – November 2015 –

1 Aim & Objectives
• Re-cap previous sessions and answers

• Work through lecture related exercises

2 Introduction
In this session we’ll be looking at procedural programming
again, but in even more detail than the previous session.
We will also lightly touch on recursive functions but this
will be covered better at a later date.

3 Exercise - Pseudo Code
Writing pseudo code for functions is relatively easy and fol-
lows the following format:
PROCEDURE hello()

DISPLAY "Hello World!"

ENDPROCEDURE

PROCEDURE functionName()

hello()

ENDPROCEDURE

functionName()

Now, using what you’ve been show here try to write the
pseudo code for a program that calls a function called ‘A()’,
which calls a function ‘B()’, which then calls a function
‘C()’. In the ‘C()’ function, get the function to write “Three
layers down!”.

It’s generally good practice to declare functions before you
use them in most languages, it’s sometimes completely re-
quired - so it’s a good habit to get into! A scripting language
like ‘BASH’ requires you declare all functions before you use
them.
PROCEDURE C()

DISPLAY "Three layers down"

ENDPROCEDURE

PROCEDURE B()

C()

ENDPROCEDURE

PROCEDURE A()

B()

ENDPROCEDURE

A()

4 Exercise - Python Code
Now write the Python code you described in the previous
exercise. This should be relatively easy by now but if you
need hints please refer to the previous week for clues.

It’s getting towards the point where your programs will be-
come complex enough for you to start forgetting how they
work. Make sure you start commenting your code correctly,
even in little code snippets like these.
Simple Example of Python Functions

#

@author D.Barry

@version 1

C()

#

This function displays a message before

exiting.

def C():

print("Three layers down")

return

B()

#

This function calls function C().

def B():

C()

return

A()

#

This function calls function A().

def A():

B()

return

Call the first function

A()

Note that a ‘Java’ style comment has been used. Haskell
does have it’s own way of commenting code but in this ex-
ample ‘Java’ style has been opted for readability.

5 Exercise - Simple Recursion
For this next session you’ll have to do a little self learning.
This should help you understand recursion better.

• What is recursion? What is the definition of recursion?

• What does recursion need in order to work?

• What uses are there for recursion?

• Are there tasks that can only be done with recursion?

Now try to write your own recursive function that iterates
a number of times.

6 Exercise - Stretch and Reach
Try these exercises if you really want to push yourself.
There is almost zero chance they will appear on the course
at all but act as interesting discussion points.

• Research “Trotter’s Algorithm” - what is it?

• What kinds of programs would require you to use this
program?

• Why is this program easier to implement recursively?

• Discuss why some functions simply can’t be changed
from recursive to iterative (loops).

• Research problem spaces and the N = NP problem.

7 Resources & Further Reading
‘http: // homepages. herts. ac. uk/ ~ db12aba/ ’ – All
content from these sessions updated weekly.

‘http: // code. org/ ’ – A good resource testing your pro-
gramming skills.

‘http: // stackoverflow. com/ ’ – Highly recommended
online help for programmers (NOTE: Employers are in-
terested to know whether you’re an active member of this
site!).

‘http: // www. draw. io ’ – A very good, free online draw-
ing tool that exports to many formats, including ‘XML’ and
‘JPG’.

1

