
PAL University of Hertfordshire

Consolidation 15 – Week 17 – March 2016 –

Aim & Objectives
• Discuss previous session

• Look forward to next session

Introduction
In this session we will look at reading and writing to Java
and making a Java GUI. The program to demonstrate all
of these things will be a simple text editor.

Exercise - Saving and reading files in Java
So for this, we will make a few assumptions, as follows:

• The files that need to be read and written are in text.

• The files are small enough to fit into ‘RAM’ and the ‘JVM’.

• The files don’t overflow the size of a single ‘String’
object.

Using those assumptions, we can use the following code to
read a file into a ‘String’:
/**

* readFile()

*

* Read the files into a String object.

*

* @param file The file to be read.

* @return The contents on the file,

otherwise NULL.

**/

private String readFile(File file){
String data = null;

FileReader fr = null;

try{
fr = new FileReader(file);

/* Create a buffer to read the bytes

into */

char[] buffer = new

char[(int)file.length()];

/* Make the read */

fr.read(buffer);

data = new String(buffer);

/* Close the file for everybody else */

fr.close();

}catch(IOException e){
/* Do nothing */

}finally{
/* If we did manage to open the file,

don’t lock it up */

if(fr != null){
/* Try to finish what we started */

try{
fr.close();

}catch(IOException e){
/* Do nothing */

}
}

}
return data;

}
And the following will write a file:
/**

* writeFile()

*

* Writes the file to the disk.

*

* @param file The file to be written.

* @param data The data be be written to

the disk.

**/

private void writeFile(File file, String

data){
FileOutputStream out = null;

try{
out = new FileOutputStream(file);

}catch(FileNotFoundException e){
/* Handle error */

writeError();

}
try{

if(out != null){
out.write(data.getBytes());

out.close();

}
}catch(IOException e){

/* Handle error */

writeError();

}
}

Exercise - GUI
To implement the GUI, you’ll need to look at the following
concepts in Java:

• ‘JFrame’ - This will be for the main window.

• ‘JTextArea’ - This will be for the text in your window.

There are many guides to creating a GUI, using the read
and write code given to you produce a basic text editor. An
example program will be given at the end of the session.

Exercise - Further Improvements
Here we should start to look at fixing the above limitations.
We can also start to do some other interesting ideas as fol-
lows:

• Syntax highlighting - in particular, look at the syn-
tax highlighter written at http://homepages.herts.

ac.uk/~db12aba/code-highlight.js for a method of
highlighting without knowing the language.

• File types - How should we be reading and writing
different files in ASCII, Unicode, etc?

• Display characters - Unicode has a tonne on emoji
and other useful characters - is there some way we can
begin to start displaying those?

• File tracking - Detecting when a file we’re working
on changes. Java’s ‘File’ class offers some nice infor-
mation on this front.

Resources & Further Reading
‘http: // homepages. herts. ac. uk/ ~ db12aba/ ’ – All
content from these sessions updated weekly.

‘http: // code. org/ ’ – A good resource testing your pro-
gramming skills.

‘http: // stackoverflow. com/ ’ – Highly recommended
online help for programmers (NOTE: Employers are in-
terested to know whether you’re an active member of this

1

site!).

‘http: // draw. io ’ – A very good, free online drawing tool
that exports to many formats, including ‘XML’ and ‘JPG’.

2

