
Kernel Patching Intel Realsense R200 ToF Images

Barry, Daniel.

UC Robotics

Email: danbarry[24][@]googlemail[dot]com

June, 2017

Abstract: In this paper we explore several methods of re-
pairing the images from the Intel Realsense R200 ToF sen-
sor [1], reviewing both the time taken for each method and
visual inspection of the depth reconstruction. Our findings
show that a recursive cross-shaped kernel is both lightweight
and effective at reconstructing missing depth data.

1 Introduction

1.1 Motivation

This project has been motivated by the depth images pro-
duced by the Intel Realsense R200 time of flight (ToF) cam-
era [1], where it’s limited focus on depth and imperfect cap-
ture of ToF data produces images where holes are visibly
seen in the resulting image. This is highlighted in figure 1,
where we can clearly see we have missing data, despite the
depth ranges being within the focus area as seen in figure
2.

Figure 1: Example depth image produced by Intel Realsense
R200.

Figure 2: Example colour image produced by Intel Re-
alsense R200.

The reason for using this device over a much more powerful
sensor array would be motivated by both it’s size and power
consumption, therefore as we look to recover the missing

data, we should look to use as little processing power as
possible. For most uses, it will be required that the 640x480
pixel image is processed in less than 33.33ms in order to
allow the sensor data to be processed at 30FPS.

Figure 3: Sensor-actuator loop time series.

In figure 3 we have a diagram of a sensor-actuator time se-
ries, A is the actuator, S in the sensor, W is the world and t

is time. The result of not being able to process S_t before
S_t+1, means that A_t+1 uses information from a previous
state. In that time, the world state, W, could have changed
between W_t and W_t+1. This behaviour is undesired, as the
robot may appear slow to respond and potentially exhibit
a hunting behaviour when attempting to react to the envi-
ronment.

1.2 Background

The problem we have is that a 2D array of data is “corrupt”,
leaving holes signified as black (or zero) entries. This makes
object detection more difficult, as it’s harder job to figure
out if the gap bridges two objects or represents the same
object, as can be seen in figure 1. To fix this problem, we
look to kernels.

A kernel is a simple image processing matrix that applies
simple arithmetic over a small scope, typically a square with
the 2D array. We pass this kernel over the image and in
turn generate a new image representing the missing data.
For our purposes, we can assume that the data that we do
know is correct (or that we have no way of telling it isn’t)
and that the missing data is to be filled. This means we can
do our kernel in place, to save on additional memory usage,
copying time and information we’re trying to store in the
CPU cache.

2 Methodology

In this section we look at the kernels used and the method
we use for testing them.

1

2.1 Kernels

2.1.1 Expanding Ring Cross

The main concept of this algorithm is to keep expanding
a cross (in all four diagonal directions) until two or more
pixels are found to get an average from.
The following is the implementation:

int width = depth.length - size;

int height = depth [0]. length - size;

for(int y = size; y < width; y++){

for(int x = size; x < height; x++){

if(depth[y][x] != 0xFF000000){

resultBuffer[y][x] = depth[y][x];

}else{

int s = 1;

int sum = 0;

int num = 0;

while(s <= size){

int nw = depth[y - s][x - s] & 0xFF;

int ne = depth[y - s][x + s] & 0xFF;

int sw = depth[y + s][x - s] & 0xFF;

int se = depth[y + s][x + s] & 0xFF;

if(nw != 0){

sum += nw;

++num;

}

if(ne != 0){

sum += ne;

++num;

}

if(sw != 0){

sum += sw;

++num;

}

if(se != 0){

sum += se;

++num;

}

if(num > 1){

int avg = sum / num;

resultBuffer[y][x] = (avg << 16) | (avg

<< 8) | (avg) | 0xFF000000;

s = size;

}

s += 2;

}

}

}

}

2.1.2 Depth From Image

Here we try to infer the depth of the missing information
by looking at the maximum and minimum local values and
trying to extrapolate where our data would fit in this range.
The following is the implementation:

for(int y = size; y < depth.length - size; y++){

for(int x = size; x < depth[y]. length - size;

x++){

if(depth[y][x] == 0xFF000000){

int colMin = 255;

int colMax = 0;

int depMin = 255;

int depMax = 0;

int num = 0;

for(int z = y - size; z < y + size; z++){

for(int w = x - size; w < x + size; w++){

int d = depth[z][w] & 0x000000FF;

if(d != 0){

int p = (

(0 x000000FF & (color[z][w] >> 16)) +

(0 x000000FF & (color[z][w] >> 8)) +

(0 x000000FF & (color[z][w]))

) >> 2;

if(p < colMin){

colMin = p;

}

if(p > colMax){

colMax = p;

}

if(d < depMin){

depMin = d;

}

if(d > depMax){

depMax = d;

}

++num;

}

}

}

if(num > 0){

int colRng = (colMax - colMin) >> 2;

int depRng = (depMax - depMin) >> 2;

colMin += colRng;

colMax -= colRng;

depMin += depRng;

depMax -= depRng;

double m = (double)(depMax - depMin) /

(double)(colMax - colMin);

double c = depMax - (m * colMax);

int p = (

(0 x000000FF & (color[y][x] >> 16)) +

(0 x000000FF & (color[y][x] >> 8)) +

(0 x000000FF & (color[y][x]))

) >> 2;

int val = Math.max(depMin ,

Math.min(depMax , (int)((m * p) + c)));

resultBuffer[y][x] = (val << 16) | (val

<< 8) | (val) | 0xFF000000;

}

}else{

resultBuffer[y][x] = depth[y][x];

}

}

}

2.1.3 Expanding Ring Kernel

The expanding ring kernel method looks to keep expanding
a ring until two or more pixels are found in an expanded
ring.
The following is the implementation:

for(int y = size; y < depth.length - size; y++){

for(int x = size; x < depth[y]. length - size;

x++){

if(depth[y][x] != 0xFF000000){

resultBuffer[y][x] = depth[y][x];

}else{

int s = 1;

while(s > 0 && s <= size){

int sum = 0;

int num = 0;

for(int i = -s; i < s; i++){

if(depth[y - s][x + i] != 0xFF000000){

sum += depth[y - s][x + i] &

0x000000FF;

++num;

}

if(depth[y + s][x + i] != 0xFF000000){

sum += depth[y + s][x + i] &

0x000000FF;

++num;

}

if(depth[y + i][x - s] != 0xFF000000){

sum += depth[y + i][x - s] &

0x000000FF;

++num;

}

if(depth[y + i][x + s] != 0xFF000000){

sum += depth[y + i][x + s] &

0x000000FF;

++num;

}

}

2

if(num > 1){

int avg = sum / num;

resultBuffer[y][x] = (avg << 16) | (avg

<< 8) | (avg) | 0xFF000000;

s = -1;

}else{

++s;

}

}

}

}

}

2.1.4 Linear Processing

This kernel is similar to depthFromImage(), except it tries to
consider all of the pixels when creating a linear representa-
tion (y = mx + c) as to get the best pixel translation.
The following is the implementation:

for(int y = size; y < depth.length - size; y++){

for(int x = size; x < depth[y]. length - size;

x++){

if(depth[y][x] != 0xFF000000){

resultBuffer[y][x] = depth[y][x];

}else{

int sumCol = 0;

int sumDep = 0;

double num = 0;

for(int z = y - size; z < y + size; z++){

for(int w = x - size; w < x + size; w++){

if(gray(depth[z][w]) > 0){

sumCol += gray(color[z][w]);

sumDep += gray(depth[z][w]);

num += 1.0;

}

}

}

if(num > 0){

double avgCol = sumCol / num;

double avgDep = sumDep / num;

double diffCol = 0;

double diffDep = 0;

for(int z = y - size; z < y + size; z++){

for(int w = x - size; w < x + size;

w++){

if(gray(depth[z][w]) > 0){

diffCol += avgCol -

gray(color[z][w]);

diffDep += avgDep -

gray(depth[z][w]);

}

}

}

diffCol /= num;

diffDep /= num;

double m = (avgDep - diffDep) / (avgCol -

diffCol);

m /= 32.0;

double c = avgDep - (m * avgCol);

int pixel = Math.max(0, Math.min(255,

(int)((m * gray(color[y][x])) + c)));

resultBuffer[y][x] = (pixel << 16) +

(pixel << 8) + pixel + 0xFF000000;

}else{

resultBuffer[y][x] = depth[y][x];

}

}

}

}

2.1.5 Stretch Horizontal Kernel

This “kernel” (possibly not quite in this category) sim-
ply stretches the last known valid pixel to cover any blank
spaces in the horizontal direction.
The following is the implementation:

for(int y = 0; y < depth.length; y++){

int p = 0xFF000000;

for(int x = 0; x < depth[y]. length; x++){

if(depth[y][x] == 0xFF000000){

resultBuffer[y][x] = p;

}else{

p = depth[y][x];

resultBuffer[y][x] = p;

}

}

}

2.2 Experiment

The experiment was performed for all of the above methods,
using kernel sizes of {0, 1, 2, 4, 8, 16, 32, 64, 128}, over
100 iterations of each. A simple average was then taken
so that the results could be compared and the fundamental
speed differences down to computer and operating system
itself could be statistically negated from the results.
Finally, there will be a visual inspection of the kernel re-
sults as both the height maps views through a point-cloud
application to help identify how well they perform. This
will allow us to make the trade-off between time taken to
process the image and the results of the processing.

3 Results

This experiment was performed on a computer with the
following specifications:

• Intel Core i7-6700HQ CPU @ 2.60GHz x 8
• 15.6 GiB DDR4 RAM

Note that this experimenting used one core of this many
core machine, which should hopefully also help reduce the
affects of the underlying operating system and fairly random
execution of various tasks.

3.1 Data

Type Kernel Size Average Time
c 0 5.74563856
c 1 10.48270523
c 2 10.73666647
c 4 11.99379303
c 8 16.99396152
c 16 17.97773062
c 32 13.5901129
c 64 15.30741013
c 128 13.58260142
d 0 8.57698502
d 1 15.74986771
d 2 22.34381421
d 4 49.40358899
d 8 188.70524135
d 16 587.9495269
d 32 2006.11533239
d 64 6118.13089812
d 128 11266.4092583
e 0 5.82274667
e 1 15.20993678
e 2 22.77032388

3

e 4 28.15856514
e 8 37.87871734
e 16 42.71119977
e 32 37.91791815
e 64 34.89005538
e 128 25.34426004
l 0 8.8967575
l 1 29.82275601
l 2 38.5474815
l 4 93.31674083
l 8 347.1734455
l 16 1269.37634313
l 32 4050.40232619
l 64 12393.2870707
l 128 22898.96308828
s 0 6.51492969
s 1 6.49016443
s 2 6.49409448
s 4 6.42818826
s 8 6.53791844
s 16 6.91076957
s 32 6.5586434
s 64 6.66761187
s 128 6.54124983

3.2 Output

Below are the various kernels of size 16, with corresponding
point clouds at the same angle for each comparison. These
are shown in figures 4 to 9.

Figure 4: Unprocessed data.

Figure 5: Expanding ring cross.

Figure 6: Depth from image.

3.3 Graphs

Below are the produced graphs, showing a plot of kernel size
vs time (ms), to allow us to judge both whether the kernel
can be run without our time frame of 33ms and whether
the algorithm scales well. The results are shown in figures
10 to 14.

Figure 7: Expanding ring kernel.

Figure 8: Linear processing.

Figure 9: Stretch horizontal kernel.

Figure 10: Expanding ring cross.

Figure 11: Depth from image.

Figure 12: Expanding ring kernel.

4

Figure 13: Linear processing.

Figure 14: Stretch horizontal kernel.

4 Conclusion

Both models d and l, based on processing depth from colour
image pixels, are too slow with any reasonably sized kernel.
It appears that building a local translation between depth
and colour is both not very effective and too process inten-
sive for real-time application. Models c, e and s appear to
have a good relationship between time taken and kernel size
- some even reducing time for larger kernels. This is because
as the kernel size increases, the further from the edge of the
image the kernel starts in order to process the depth data.
Eventually, the kernel size could grow to such a size that
it ends up not processing anything at all. 128 is the largest
size we thought was reasonable to have the kernel at, any
larger and the FOV would drop too much to be useful.

Model s was by far the cheapest, being just a simple smudge
of the last valid depth value - but produces the worst results
when viewing the point cloud. This leaves models c and e,
with e being both the more expensive operation and viewing
the worst in the point cloud view. c appears to be our clear
depth image repairer, with one of the smallest run times
and good results.

Our testing method should not be considered fully conclu-
sive, as the testing data did not fully represent what we shall
see in our usage of the Intel Realsense R200 sensor. It was
one example capture used for all testing to keep the tests
repeatable and the experiments easy to compare. What we
can conclude from these tests is that there is not a sim-
ple relationship between colour information and ToF in the
depth image, so exploring this avenue further is unlikely to
be fruitful.

Method c, expanding ring cross, shall certainly become
our benchmark for future improvements to our ToF image
patching and possibly be used as our initial test implemen-
tation on real hardware.

5 Future Work

One of the steps we are now discussing is to use a better
sensor, such as that offered by the Xbox Kinnect, to artifi-
cially introduce our corrupted depth image data and then
measure how close a kernel is able to come to the original
image. We also discussed using a learning method for auto-
matically producing better kernels based on a better wealth
of test data, possibly using a method such as genetic pro-
gramming to produce better kernels. The search space can
be reduced to multiplication and finally addition for the rel-
evant values after a threshold is met, also making use of the
kernel’s horizontal and vertical symmetry to reduce search
time.
Additional method worth exploring include recurrent neu-
ral networks, deep neural networks, convolution neural net-
works and possibly the use of a hybrid fuzzer for producing
and testing kernels.
Eventually, we would like to use this data to aid object de-
tection within the VEX competition environment, requiring
the fast detection of objects that vary in size and colour.

6 References

(1) Intel

5

http://ark.intel.com/products/92256/Intel-RealSense-Camera-R200

	Introduction
	Motivation
	Background

	Methodology
	Kernels
	Expanding Ring Cross
	Depth From Image
	Expanding Ring Kernel
	Linear Processing
	Stretch Horizontal Kernel

	Experiment

	Results
	Data
	Output
	Graphs

	Conclusion
	Future Work
	References

